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Abstract

A useful approach to the mathematical analysis of large-scale biological networks
is based upon their decompositions into monotone dynamical systems. This paper
deals with two computational problems associated to finding decompositions which are
optimal in an appropriate sense. In graph-theoretic language, the problems can be
recast in terms of maximal sign-consistent subgraphs. The theoretical results include
polynomial-time approximation algorithms as well as constant-ratio inapproximabil-
ity results. One of the algorithms, which has a worst-case guarantee of 87.9% from
optimality, is based on the semidefinite programming relaxation approach of Goemans-
Williamson [23]. The algorithm was implemented and tested on a Drosophila segmen-
tation network and an Epidermal Growth Factor Receptor pathway model, and it was
found to perform close to optimally.

1 Introduction

In living cells, networks of proteins, RNA, DNA, metabolites, and other species process envi-
ronmental signals, control internal events such as gene expression, and produce appropriate
cellular responses. The field of systems (molecular) biology is largely concerned with the
study of such networks, viewed as dynamical systems. One approach to their mathemati-
cal analysis relies upon viewing them as made up of subsystems whose behavior is simpler
and easier to understand. Coupled with appropriate interconnection rules, the hope is that
emergent properties of the complete system can be deduced from the understanding of these
subsystems. Diagrammatically, we picture this as in Figure 1, which shows a full system as
composed of four subsystems.
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Figure 1: A system composed of four subsystems

A particularly appealing class of candidates for “simpler behaved” subsystems are mono-
tone systems, as in [26, 27, 48]. Monotone systems are a class of dynamical systems for which
pathological behavior (“chaos”) is ruled out. Even though they may have arbitrarily large
dimensionality, monotone systems behave in many ways like one-dimensional systems. For
instance, in monotone systems, bounded trajectories generically converge to steady states,
and there are no stable oscillatory behaviors. More precisely, see below, one must extend the
notion of monotone system so as to incorporate input and output channels, as introduced
and initially developed in [5]; inputs and outputs are required so that interconnections like
those shown in Figure 1 can be defined.

Monotonicity is closely related, as explained later, to positive and feedback loops in
systems. The topic of analyzing the behaviors of such feedback loops is a long-standing one
in biology in the context of regulation, metabolism, and development; a classical reference
in that regard is the work [40] of Monod and Jacob in 1961. See also, for example, [3, 6, 12,
33, 37, 46, 47, 50, 55].

An interconnection of monotone subsystems, that is to say, an entire system made up of
monotone components, may or may not be monotone: “positive feedback” (in a sense that
can be made precise) preserves monotonicity, while “negative feedback” destroys it. Thus,
oscillators such as circadian rhythm generators require negative feedback loops in order for
periodic orbits to arise, and hence are not themselves monotone systems, although they
can be decomposed into monotone subsystems (cf. [7]). A rich theory is beginning to arise,
characterizing the behavior of non-monotone interconnections. For example, [5] shows how
to preserve convergence to equilibria; see also the follow-up papers [4, 18, 21, 22, 31]. Even
for monotone interconnections, the decomposition approach is very useful, as it permits
locating and characterizing the stability of steady states based upon input/output behaviors
of components, as described in [6]; see also the follow-up papers [3, 20, 32].

Moreover, a key point brought up in [52, 53] is that new techniques for monotone systems
in many situations allow one to characterize the behavior of an entire system, based upon
the “qualitative” knowledge represented by general network topology and the inhibitory or
activating character of interconnections, combined with only a relatively small amount of
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quantitative data. The latter data may consist of steady-state responses of components (dose-
response curves and so forth), and there is no need to know the precise form of dynamics or
parameters such as kinetic constants in order to obtain global stability conclusions.

In Section 2 of this paper, we briefly discuss monotonicity of systems described by ordi-
nary differential equations (the study of monotonicity can be extended to partial differen-
tial equations, delay-differential equations, and even more arbitrary dynamical systems, see
e.g. [21] in the context of monotone systems with inputs and outputs). We explain there
how the study of monotone systems, and more generally of decompositions into monotone
systems, relates to a sign-consistency property for the graph which describes how each state
variable influences each other variable in a given system.

Generally, a graph, whose edges are labeled by “+” or “−” signs (sometimes one writes
+1,−1 instead of +,−, or uses respectively activating “→” or inhibiting “a” arrows as shown
in Figure 2), is said to be sign-consistent if all paths between any two nodes have the same

Figure 2: A consistent and an inconsistent graph

net sign, or equivalently, all closed loops have positive parity, i.e. an even number, possibly
zero, of negative edges. (For technical reasons, one ignores the direction of arrows, looking
only at undirected graphs; see more details in Section 2.) Thus, the first graph in Figure 2
is consistent, but the second one, which differs in just one edge from the first one, is not
(two paths with different parity are possible from node 1 to node 4, a direct odd one as well
as an even one transversing nodes 2 and 3). Self-loops, which in biochemical systems often
represent degradation terms, are ignored in this definition. (We discuss this point further
below.)

When applying decomposition theorems such as those described in [3–6, 18, 20–22, 31,
32, 52, 53], it tends to be the case that the fewer the number of interconnections among
components, the easier it is to obtain useful conclusions. One may view a decomposition into
interconnections of monotone subsystems as the “pulling out” of “inconsistent” connections
among monotone components, the original system being a “negative feedback” loop around
an otherwise consistent system, as represented in Figure 3. In this interpretation, the number
of interconnections among monotone components corresponds to the number of variables
being fed-back. In addition, and independently from the theory developed in the above
references, one might speculate that nature tends to favor systems that are decomposable
into small monotone interconnections (or equivalently, have a small number of inconsistent
paths). There are two reasons for this.

3



�

- consistent

“−”

Figure 3: Pulling-out inconsistent connections

From a dynamical systems perspective, negative feedback loops, although required for
homeostasis and for periodic behavior, have potentially destabilizing effects, especially if
there are signal propagation delays; thus, minimizing their number is desirable. Another
advantage of consistency is as follows ([54]). Suppose that the nodes in the graphs shown in
Figure 2 represent concentrations of a chemical species in a cell, such as receptors in a certain
activated state or transcription factors. Assume now that a perturbation instantaneously
increases the value of the concentration of node 1. For the graph on the left, the instantaneous
effect on the other nodes is predictable: nodes 2 and 6 will increase, while nodes 3,4, and 5
will decrease. This unambiguous global effect holds true regardless of the actual algebraic
forms of reactions, values of parameters such and kinetic constants, etc. In contrast, consider
the graph shown on the right. Now the net effect of an increase in node 1 is ambiguous.
It is impossible to know if node 4 will be repressed (because of the direct edge from 1 to
4) or activated (because of the indirect path). There is no way to resolve this ambiguity
unless equations and precise parameter values are assigned to the arrows. Since cells of
the same type differ in precise parameter values, due to varying concentrations of ATP,
enzymes, and other chemicals, two cells of the same type may react in different ways to the
same “stimulus” (increase in concentration of chemical 1). While such epigenetic diversity
is sometimes desirable, it makes behavior less predictable. From an evolutionary viewpoint,
a “change in wiring” due to a mutation will not have an ambiguous effect. Moreover, if the
number of inconsistencies in a biological interaction graph is not zero but is small, it may
well be the case that the network is in fact consistent in a practical sense. For example,
a gene regulatory network represents all potential effects among genes. These effects are
mediated by proteins which themselves may need to be “activated” in order to perform their
function, and this activation may depend on certain extracellular ligands being present.
Thus, depending on the combination of external signals, different subgraphs of the original
graph describe the system under those conditions, and these graphs may be individually
consistent. For example, for the system in Figure 2, the edge from 1 to 2 may not be
present under environmental conditions A, and the edge from 2 to 3 may not be present
under conditions B. Thus, under either conditions A or B, the graph is consistent. See [54]
for more discussion of these issues. In summary, consistency in biological networks may be
desirable, and therefore one might conjecture that true biological networks tend to maximize
it. Evidence that this is indeed the case is provided by [36], where the authors compare
certain biological networks and appropriately randomized versions of them and show that
the original networks are closer to being consistent, when consistency is measured using a
simple heuristic. In the last section of this paper, we apply our algorithms to perform a
similar analysis and once again derive the conclusion that nature seems to favor consistency.

Thus, we are led to the subject of this paper, namely computing the smallest number of
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edges that have to be removed so that there remains a consistent graph. For example, for
the particular graph shown in Figure 4 the answer is that one edge (the diagonal positive
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Figure 4: Dropping the diagonal edge gives consistency

one) suffices, and it is worth remarking that no single other edge would suffice.

There has been other work dealing with efficient knock-out strategies in biochemical
reaction networks, also formulated, as in this paper, as edge deletion problems. As an
example, we mention the recent paper [30], which dealt with the question of identifying a
minimal set of reactions whose removal would block the operation of a prespecified reaction.
The problem that we consider is completely different, however.

In this paper, we will study the computational complexity of the question of how many
edges must be removed in order to obtain consistency, and we provide a relaxation-based
polynomial-time approximation algorithm guaranteed to solve the problem to about 87.9% of
the optimum solution, which is based on the semidefinite programming relaxation approach
of Goemans-Williamson [23] (A variant of the problem is discussed as well). We also observe
that it is not possible to have a polynomial-time algorithm with performance too close to the
optimal. While our emphasis is on theory, one of the algorithms was implemented, and we
show results of its application to a Drosophila segmentation network and to an Epidermal
Growth Factor Receptor pathway model. It turns out that, when applying the algorithm,
often the solution is much closer to optimal than the worst-case guarantee of 87.9%, and
indeed often gives an optimal solution.

The remainder of this paper is organized as follows. Section 2 briefly discusses mono-
tonicity. The discussion is self-contained for the purposes of this paper, and references are
given to the dynamical systems results that motivate the problem studied here. The connec-
tion to consistency is also explained there. Section 3 discusses the associated graph-theoretic
problems and notions of approximability used in the paper, leading to the statement of our
main theoretical results in Section 4, which are proved in Section 5. Section 6 contains the
mentioned examples of application of the algorithm. Finally, in Section 6.3 we consider a
yeast gene regulatory network and various randomized versions of it, concluding that the
original network is far closer to consistent than may be expected from chance alone. Several
technical proofs are separately provided in an Appendix.
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2 Monotone Systems and Consistency

We will illustrate the motivation for the problem studied here using systems of ordinary
differential equations

ẋ = F (x) (1)

(the dot indicates time derivative, and x = x(t) is a vector), although the discussion applies
as well to more general types of dynamical systems such as delay-differential systems or cer-
tain systems of reaction-diffusion partial differential equations. In applications to biological
networks, the component xi(t) of the vector x = x(t) indicates the concentration of the ith
species in the model at time t.

We will restrict attention to models in which the direct effect that one given variable in
the model has over another is unambiguous, in the sense that it is always inhibitory or always
promoting. Thus, if protein A binds to the promoter region of gene B, we assume that it
does so either to prevent the transcription of the gene or to facilitate it, no matter what are
the respective concentrations. Mathematically, what we are saying is that we require that
for every i, j = 1 . . . n, i 6= j, the partial derivative ∂Fi/∂xj be either ≥ 0 at all states or ≤ 0
at all states.

Let us briefly discuss this non-ambiguity assumption. First of all, we remark that this
assumption does not prevent protein A from having an indirect influence, through other
molecules, perhaps dimmers of A itself, that can ultimately lead to the opposite effect on
gene B from that of a direct connection. Indeed, this is the whole point of studying graph
consistency. Second, in biomolecular networks, ambiguous signs in Jacobians often repre-
sent heterogeneous mechanisms. For example, take the case where protein A enhances the
transcription rate of gene B only if it is present at low concentrations, but represses B if
its concentration is larger than some threshold. A careful study of the chemical mecha-
nism often reveals the existence of an intermediate form (perhaps a homodimer) that is
responsible for this ambiguous effect. (Mathematically, an example is a rate of transcrip-
tion k1a − k2a

2, where a denotes the concentration of A.) Introducing a new species into
the model (mathematically, an additional state variable representing this intermediate form)
reduces one to the problem in which Jacobian entries are unambiguous. (In our example,
we would write the rate as k1a− k2c, where c is the concentration of the dimer. In addition,
there would be a new equation such as dc/dt = k3a

2 − k4c representing formation of the
dimer and its degradation.) Finally, we note that small-scale negative loops are abundant
in nature. Self-loops or “auto repression” are an extreme example of these, and appear as
a consequence of degradation and other effects. Regarding such self-loops, observe that the
requirement of a fixed sign for Jacobian entries is not imposed on diagonal elements. In fact,
these elements play no role in the graph to be introduced next, nor on monotonicity - the
properties of monotone systems are not affected by them. More generally, it is often the
case that small loops represent fast dynamics which may be collapsed into a self-loops via
time-scale decomposition (singular perturbations or, specifically for enzymes, “quasi-steady
state approximations”) and hence may be viewed and diagonal terms which may be safely
ignored. This is a modeling question, to be settled before the algorithms studied here are to
be applied.

6



Given any partial order ≤ defined on Rn, a system (1) is said to be monotone with respect
to ≤ if x0 ≤ y0 implies x(t) ≤ y(t) for every t ≥ 0. Here x(t), y(t) are the solutions of (1)
with initial conditions x0, y0, respectively. Of course, whether a system is monotone or
not depends on the partial order being considered, but we one says simply that a system
is monotone if the order is clear from the context. Monotonicity with respect to nontrivial
orders rules out chaotic attractors and even stable periodic orbits; see [26, 27, 48], and is,
as discussed in the introduction, a useful property for components when analyzing larger
systems in terms of subsystems.

A useful way to define partial orders in Rn, and the only one to be further considered in
this paper, is as follows. Given a tuple s = (s1, . . . sn), where si ∈ {1,−1} for every i, we say
that x ≤s y if sixi ≤ siyi for every i. For instance, the “cooperative order” is the orthant
order ≤s generated by s = (1, . . . 1). This is the order ≤ defined by x ≤ y if and only if
xi ≤ yi for all i = 1, . . . , n. It is not difficult to verify if a system is cooperative with respect
to an orthant order; the following lemma, known as “Kamke’s condition,” is not hard to
prove, see [48] for details (also [5] in the more general context of monotone systems with
input and output channels).

Lemma 1 Consider an orthant order ≤s generated by s = (s1, . . . , sn). A system (1) is
monotone with respect to ≤s if and only if

sisj
∂Fj

∂xi

≥ 0, i, j = 1 . . . n, i 6= j. (2)

To provide intuition, let us sketch the sufficiency part of the proof for the special case of
the cooperative order. Suppose by contradiction that the system is not monotone, and that
therefore there is a pair of initial conditions x0 ≤ y0 whose solutions x(t), y(t) cease to satisfy
x(t) ≤ y(t) at some point. This implies that at a certain critical moment in time t, there is
some coordinate i so that xi(t

−) < yi(t
−) but xi(t

+) > yi(t
+). (This argument is not entirely

accurate, but it gives the flavor of the proof.) Thus xi(t) = yi(t) for some i and the derivative
with respect to time of xi is larger than that of yi at time t, meaning that that Fi(x) > Fi(y),
where x = xi(t) and y = yi(t). However, this cannot happen if Fi is increasing on all the
variables xj except possibly xi, so that x ≤ y, xi = yi implies Fi(x) ≤ Fi(y). An equivalent
way to phrase this condition is by ask that ∂Fi/∂xj ≥ 0 at all states for every i, j, i 6= j,
which is the Kamke condition for the special case of the cooperative order. The name of the
order arises because in a monotone system with respect to that order each species promotes
or “cooperates” with each other.

A rephrasing of this characterization of monotonicity with respect to orthant orders can
be given by looking at the signed digraph G associated to (1). We define the vertex set V (G)
and the edge set E(G) of G as follows. Let V (G) = {1, . . . , n}, and given vertices i, j, let
(i, j) ∈ E(G) and fE(i, j) = 1 if both ∂Fj/∂xi ≥ 0 and the strict inequality holds at least at
one state. Similarly let (i, j) ∈ E(G) and fE(i, j) = −1 if both ∂Fj/∂xi ≤ 0 and the strict
inequality holds at least at one state. Finally, let (i, j) 6∈ E(G) if ∂Fj/∂xi ≡ 0. Recall that
we are assuming that one of the three cases must hold.

Now we can define an orthant cone using any function fV : V (G) → {−1, 1}, by letting
x ≤fV

y if and only if fV (i)xi ≤ fV (i)yi for all i. Given fV , we define the consistency
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function g : E(G) → {true, false} by g(i, j) = fV (i)fV (j)fE(i, j). Then, the following analog
of Lemma 1 holds.

Lemma 2 Consider a system (1) and an orthant cone ≤fV
. Then (1) is monotone with

respect to ≤fV
if and only if g(i, j) ≡ 1 on E(G).

Proof. Let si = fV (i), i = 1 . . . n. Note that sisj∂fi/∂xj = 0 if (i, j) 6∈ E(G). For
(i, j) ∈ E(G), it holds that sisj∂fi/∂xj ≥ 0 if and only if sisjfE(i, j) = 1, that is, if and
only if g(i, j) = 1. The result follows from Lemma 1. ❑

For the next lemma, let the parity of a chain in G be the product of the signs (+1,−1)
of its individual edges. We will consider in the next result closed undirected chains, that
is, sequences xi1 . . . xir such that xi1 = xir , and such that for every λ = 1, . . . , r − 1 either
(xiλ , xiλ+1

) ∈ E(G) or (xiλ+1
, xiλ) ∈ E(G).

The following lemma (see [17] as well as [49, page 101]) is analogous to the fact from
vector calculus that path integrals of a vector field are independent of the particular path
of integration if and only if there exists a potential function. Since the result is key to the
formulation of the problem being considered, we provide a simple and self-contained proof
in an Appendix.

Lemma 3 Consider a dynamical system (1) with associated directed graph G. Then (1) is
monotone with respect to some orthant order if and only if all closed undirected chains of G
have parity 1.

2.1 Systems with Inputs and Outputs

As we discussed in the introduction, a useful approach to the analysis of biological networks
consists of decomposing a given system into an interconnection of monotone subsystems. The
formulation of the notion of interconnection requires subsystems to be endowed with “input
and output channels” through which information is to be exchanged. In order to address
this we consider controlled dynamical systems ([51], which are systems with an additional
parameter u ∈ Rm, and which have the form

ẋ = g(x, u). (3)

The values of u over time are specified by means of a function t → u(t) ∈ Rm, t ≥ 0, called
an input or control. Thus each input defines a time-dependent dynamical system in the
usual sense. To system (3) there is associated a feedback function h : Rn → Rm, which is
usually used to create the closed loop system ẋ = g(x, h(x)). Finally, if Rn, Rm are ordered
by orthant orders ≤fV

, ≤q respectively, we say that the system is monotone if it satisfies (2)
for every u, and also

qkfV (j)
∂gj

∂uk

≥ 0, for every k, j (4)
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(see also [5].) As an example, let us consider the following biological model of testosterone
dynamics [19, 41]:

ẋ1 = A
K + x3

− b1x1

ẋ2 = c1x1 − b2x2

ẋ3 = c2x2 − b3x3.

(5)

Drawing the digraph of this system, it is easy to see that it is not monotone with respect
to any orthant order, as follows by application of Lemma 3. On the other hand, replacing
x3 in the first equation by u, we obtain a system that is monotone with respect to the
orders ≤(1,1,1), ≤(−1) for state and input respectively. Defining h(x) = x3, the closed loop
system of this controlled system is none other than (5). The paper [19] shows how, using this
decomposition together with the “small gain theorem” from monotone input/output theory
([5]) leads one to a proof that the system does not have oscillatory behavior, even under
arbitrary delays in the feedback loop, contrary to the assertion made in [41].

We can carry out this procedure on an arbitrary system (1) with a directed graph G, as
follows: given a set E of edges in G, enumerate the edges in EC as (i1, j1), . . . (im, jm). For
every k = 1 . . . m, replace all appearances of xik in the function Fjk

by the variable uk, to
form the function g(x, u). Define h(x) = (xi1 , . . . xim). It is easy to see that this controlled
system (3) has closed loop (1).

Note that the controlled system (3) generated by the set E as above has, as associ-
ated digraph, the sub-digraph of G generated by E. This is because for every k, one has
∂gjk

(x, u)/∂xik ≡ 0, i.e., the edge from ik to jk has been “erased”.

Denote by Ĝ the underlying undirected graph of a directed graph G obtained by ignoring
the directions of the edges. Given a set E ⊆ V (G) of vertices in a (directed or undirected)
graph G, denote by G(E) the undirected subgraph of G generated by E. The edges of both

Ĝ and G(E) are labeled with ±1 using the labels in the edges of G, whenever appropriate.

Let E be called consistent if Ĝ(E) has no closed chains with parity −1. Note that this is
equivalent to the existence of fV such that g ≡ 1 on E, by Lemma 4 applied to the open
loop system (3). If E is consistent, then the associated system (3) itself can also be shown
to be monotone: to verify condition (4), simply define each qk so that (4) is satisfied for
k, jk. Since ∂gjk

/∂uk = ∂Fjk
/∂xik 6≡ 0, this choice is in fact unambiguous. Conversely, if (3)

is monotone with respect to the orthant orders ≤fV
, ≤q, then in particular it is monotone

for every fixed constant u, so that E is consistent by Lemma 3. We thus have the following
result.

Lemma 4 Let E be a set of edges of the digraph G. Then E is consistent if and only if the
corresponding controlled system (3) is monotone with respect to some orthant orders.

3 Statement of Problem

A natural problem is therefore the following. Given a dynamical system (1) that admits
a digraph G, use the procedure above to decompose it as the closed loop of a monotone
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controlled system (3), while minimizing the number ‖EC‖ of inputs. Equivalently, find fV

such that P (E+) =‖E+‖ is maximized and P (E−) =‖E−‖=‖EC
+‖ minimized. This produces

the following problem formulation.

Problem 1 (Undirected Labeling Problem(ULP )) :

An instance of this problem is (G, h), where G = (V, E) is an undirected graph and h: E 7→
{0, 1}. A valid solution is a vertex labeling function f : V → {0, 1}. Define an edge {u, v} ∈ E
to be consistent iff h(u, v) ≡ (f(u) + f(v)) (mod 2). The objective is then to find a valid
solution maximizing |F | where F is the set of consistent edges.

That ULP is a correct formulation for our problem is confirmed by the following easy
equivalence.

Proposition 1 Consider an instance (G, h) of ULP with an optimal solution having x
consistent edges given by a vertex labeling function f . Let D be a set of edges of smallest
cardinality that have to be removed such that for the remaining graph, that is the graph
G′ = (V, E \ D) with the same vertex set V but an edge set E \ D, there exists a vertex
labeling function f ′: V → {0, 1} that makes every edge consistent. Then, x = |E| − |D|.

Proof. Since f produces a solution of ULP with x consistent edges, exactly |E| − x edges
are inconsistent, thus |D| ≤ |E| − x, that is, x ≤ |E| − |D|. Conversely, since there is a
solution with |E| − |D| consistent edges, x ≥ |E| − |D|. ❑

A special case of ULP , namely when h(e) = 1 for all e ∈ E, is the MAX-CUT problem
(defined in Section 3.1). Moreover, ULP can be posed as a special type of “constraint
satisfaction problem” as follows. We have |E| linear equations over GF (2), one equation
per edge and each equation involving exactly two variables, over |V | Boolean variables.
The goal is to assign values to the variables to satisfy the maximum number of equations.
For algorithms and lower-bound results for general cases of these types of problems, such as
when the equations are over GF (p) for an arbitrary prime p > 2, when there are an arbitrary
number of variables per equation or when the goal is to minimize the number of unsatisfied
equations, see references such as [2, 10, 14, 25] and the references therein.

Another interpretation ([54]) of ULP is in statistical mechanics terms. Let us label
edges by “±1” instead of {0, 1}, denoting by wuv = (−1)h(u,v) the edge parities, now called
“interaction energies.” Similarly, let us consider ±1-valued vertex labeling functions, now
called (magnetic) “spin configurations,” σ : V → {−1, +1}, σ(v) = (−1)f(v). An edge {u, v}
is consistent provided that wuvσuσj = 1. A graph with ±1 weights is called an Ising spin-
glass model in statistical physics. A “non-frustrated” spin-glass model is one for which there
is a spin configuration for which every edge is consistent ([9, 13, 15, 29]). This is the same as
a consistent graph in our sense. Moreover, a spin configuration that maximizes the number
of consistent edges is one for which the “free energy” (with no exterior magnetic field):

−
∑
ij

wuvσuσv
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is minimized, a “ground state”. (When h(e) = 1 or equivalently we = −1 for all edges, one
has what is called the “anti-ferromagnetic case”.) Thus, our problem amounts to finding
ground states.

Given orthant orders ≤fV
and ≤q for Rn and Rm respectively, we say that a feedback

function h is positive if x ≤fV
y implies h(x) ≤q h(y), and that it is negative if x ≤fV

y
implies h(x) ≥q h(y). It can be shown that the closed loop of a monotone system with a
positive feedback function is actually itself monotone, so that no system can be produced
in this way that was not monotone already. But if h is a negative feedback function, then
several results become available which use the methods of monotone systems for systems
that are not monotone, see [5, 19, 21]. For the following result, let (C,⊆) be the class of
consistent subsets of E(G), ordered under inclusion.

Proposition 2 Let E be a consistent set. Then E is maximal in (C,⊆) if and only if h is
a negative feedback function for every fV such that g ≡ 1 on E.

Proof. Suppose that E is maximal, and let fV be such that g ≡ 1 on E. Given any edge
(ik, jk) ∈ EC , it holds that g(ik, jk) = −1. Otherwise one could extend E by adding (ik, jk),
thus violating maximality. That is, fV (ik)fV (jk)fE(ik, jk) = −1. By monotonicity, it holds
that qkfV (jk)∂gjk

/∂uk ≥ 0, and since ∂gjk
/∂uk = ∂Fjk

/∂xik , it follows necessarily that

qkfV (jk)fE(ik, jk) = 1.

Therefore it must hold that qk = −fV (ik) for each k, which implies that h is a negative
feedback function.

Conversely, if fV is such that g ≡ 1 on E and h is a negative feedback function, then qk =
−fV (ik). By the same argument as above, qkfV (jk)fE(ik, jk) = 1 for all k by monotonicity.
Therefore g ≡ −1 on EC . Repeating this for all admissible fV , maximality follows. ❑

There is a second, slightly more sophisticated way of writing a system (1) as the feed-
back loop of a system (3) using an arbitrary set of edges E. Given any such E, define
S(Ec) = {i | there is some j such that (i, j) ∈ Ec}. Now enumerate S(Ec) as {i1, . . . im},
and for each k label the set {j | (ik, j) ∈ Ec} as jk1, jk2, . . .. Then for each k, l, one can
replace each appearance of xik in Fjkl

by uk, to form the function g(x, u). Then one lets
h(x) = (xi1 , . . . , xim) as above. The closed loop of this system (3) is also (1) as before but
with the advantage that there are |S(Ec)| inputs, and of course |S(Ec)| ≤ |Ec|.

If E is a consistent and maximal set, then one can make (3) into a monotone system as
follows. By letting fV be such that g ≡ 1 on E, we define the order ≤fV

on Rn. For every
ik, jkl such that (ik, jkl) ∈ EC , it must hold that fV (ik)fV (jkl)fE(ik, jkl) = −1. Otherwise
E ∪ {(ik, jkl)} would be consistent, thus violating maximality. By choosing qk = −fV (ik),
equation (4) is therefore satisfied. See the proof of Proposition 2. Conversely, if the system
generated by E using this second algorithm is monotone with respect to orthant orders, and
if h is a negative function, then it is easy to verify that E must be both consistent and
maximal.

Thus the problem of finding E consistent and such that P (E−) =‖S(E−)‖=‖S(EC)‖
is smallest, when restricted to those sets that are maximal and consistent (this does not
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change the minimum ‖S(EC) ‖), is equivalent to the following problem: decompose (1)
into the negative feedback loop of an orthant monotone control system, using the second
algorithm above, and using as few inputs as possible. This produces the following problem
formulation.

Problem 2 (Directed Labeling Problem(DLP )) :

An instance of this problem is (G, h) where G = (V, E) is a directed graph and h: E → {0, 1}.
A valid solution is a vertex labeling function f : V → {0, 1}. Define an edge (u, v) ∈ E to be
consistent iff h(u, v) ≡ (f(u)+f(v)) (mod 2). The objective is then to find a valid solution
minimizing |g(E − F )| where g(C) = {u ∈ V | ∃y ∈ V, (u, y) ∈ C} for any C ⊆ E and F is
the set of consistent edges.

3.1 Summary of Key Concepts and Results in Approximation Al-
gorithms

For any γ ≥ 1 (resp. γ ≤ 1), a γ-approximate solution (or simply an γ-approximation) of a
minimization (resp., maximization) problem is a solution with an objective value no larger
than γ times (resp., no smaller that γ times) the value of the optimum, and an algorithm
achieving such a solution is said to have an approximation ratio of γ.

In [45] Papadimitriou and Yannakakis defined the class of MAX-SNP optimization prob-
lems and a special approximation-preserving reduction, the so-called L-reduction, that can
be used to show MAX-SNP-hardness of an optimization problem. The version of the L-
reduction that we provide below is a slightly modified but equivalent version that appeared
in [11].

Definition 5 [11, 45] Given two optimization problems Π and Π′, we say that Π L-reduces
to Π′ if there are three polynomial-time procedures T1,T2, T3 and two constants a and b > 0
such that the following two conditions are satisfied: (1) For any instance I of Π, algorithm
T1 produces an instance I ′ = f(I) of Π′ generated from T1 such that the optima of I and I ′,
OPT (I) and OPT (I ′), denoted by respectively, satisfy OPT (I ′) ≤ a ·OPT (I). (2) For any
solution of I ′ with cost c′, algorithm T2 produces another solution with a cost c′′ no worse
than c′, and algorithm T3 produces a solution of I of Π with cost c (possibly from the solution
produced by T2) satisfying |c−OPT (I)| ≤ b · |c′′ −OPT (I ′)|.

An optimization problem is MAX-SNP-hard if any problem in MAX-SNP L-reduces to that
problem. The importance of proving MAX-SNP-hardness results comes from a result proved
by Arora et al. [8] which shows that, assuming P6=NP, for every MAX-SNP-hard minimiza-
tion (resp., maximization) problem there exists a constant ε > 0 such that no polynomial
time algorithm can achieve an approximation ratio better than 1 + ε (resp., better than
1− ε).

A special case of the ULP problem, namely when h(e) = 1 for all e ∈ E, is the well-known
MAX-CUT problem. An instance of this problem is an undirected graph G = (V, E). A
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valid solution is a set S ⊆ V . The objective is to find a valid solution that maximizes the
number of edges {u, v} ∈ E such that |{u, v}∩S| = 1. The MAX-CUT problem is known to
be MAX-SNP-hard. For further details on these topics, the reader is referred to the excellent
book by Vazirani [57].

Some Terminology The following notation will be used for the remainder of the paper.
Given a set S of vertices in a directed graph G, define E out (S) = {(u, v) ∈ E(G) | u ∈ S}
as the set of out-bound edges of vertices in S. OPTP (I) denotes the size of an optimal
solution for a problem P with instance I. Recall that the length of a circuit c is normally
defined as the number of edges in the circuit. Given a weight function w: E 7→ R, the length
of c with respect to w is defined as

∑
e∈c

w(e).

4 Theoretical Results

Our theoretical results are summarized as follows.

Theorem 6 (a) For some constant ε > 0, it is not possible to approximate in polynomial
time the ULP and the DLP problems to within an approximation ratio of 1− ε and 1 + ε,
respectively, unless P=NP.

(b) For ULP , we provide a polynomial time α-approximation algorithm where α ≈ 0.87856
is the approximation factor for the MAX-CUT problem obtained in [23] via semidefinite
programming.

(c) For DLP , if dmax
in denotes the maximum in-degree of any vertex in the graph, then

we give a polynomial-time approximation algorithm with an approximation ratio of at most
dmax

in ·O(log |V |).

Our computational results are illustrated in Section 6 by an implementation of the al-
gorithms applied to a 13-node Drosophila segmentation network, as well as to a 200+ node
recently published network of the Epidermal Growth Factor Receptor pathway.

Remark 1 It should be noted that the complexity of ULP becomes tractable if the network
is biased significantly towards excitatory connections. Obviously, if all the edges of the given
graph G = (V, E) are labeled 0, then it is possible to label the vertices such that all the edges
are consistent. Moreover, given any graph G, it is easy to check in O((|V |+ |E|)3) time if an
optimal solution contains all the edges as consistent by solving a set of linear equations via
Gaussian elimination. Now, suppose that at most L of the edges of G are labeled 1. Then,
obviously at most L inconsistent edges exist in any optimal solution. Thus a straightforward
way to solve the problem is to consider all possible subsets of edges in which at most L
edges are dropped and checking, for each such subset, if there is an optimal solution that
contains all the edges as consistent. The total time taken is O(|V |2L. · (|V | + |E|)3), which
is a polynomial in |V |+ |E| if L is a constant.
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5 Proof of Theorem 6

This section provides the proof of Theorem 6, broken up into a series of technical parts.

5.1 Proof of Theorem 6(a)

Based on the discussion in Section 3.1, it suffices to show that both these problems are
MAX-SNP-hard. ULP is MAX-SNP-hard since its special case, the MAX-CUT problem,
is MAX-SNP-hard. To prove MAX-SNP-hardness of DLP, we need the definitions of the
following two problems.

Problem 3 (Node Deletion Problem with Bipartite Property (NDBP )) :

An instance of this problem is an undirected graph G = (V, E). A valid solution is a vertex
set S ⊆ V , such that G(V − S) is a bipartite graph. The objective is to find a valid solution
minimizing |S|.

Problem 4 (Variance of Node Deletion Problem (V NDP )) An instance of this prob-
lem is (G, h) where G = (V, E) is a directed graph and h: E → {0, 1}. A valid solutions is a
vertex set S ⊆ V with the following property: if GS = (VS, ES) is the graph with VS = V and

ES = E −E out (S), then ĜS is free of odd length circuit with respect to weight function h.
The objective is to find a valid solution minimizing |S|.

First, we note that DLP is equivalent to VNDP. If one identifies the solution set S in
UNDP with the solution set g(E − F ) in DLP, then the set of consistent edges F in DLP
corresponds to the ES in UNDP since every edge (u, v) ∈ F satisfying h(u, v) ≡ (f(u)+f(v))

(mod 2) is equivalent to stating that ĜS is free of odd length circuit with respect to weight
function h.

Thus, to prove the MAX-SNP-hardness of DLP it suffices to prove that of VNDP. NDBP
is known to be MAX-SNP-hard [34]. We provide a L-reduction from NDBP to VNDP. For
an instance of VNDP with graph G = (V, E), construct an instance of DLP with instance
(G′, h) as follows (note that G′ is a digraph): V ′ = V (G′) = V ∪ {Au,v, Bu,v | {u, v} ∈ E},
E ′ = E(G′) = {(u, Au,v), (Au,v, Bu,v), (v, Bu,v) | {u, v} ∈ E}, and h(e) = 1 for all e ∈ E ′

Now, the following holds:

(1) If S is a solution to NDBP , it is also a solution to the generated instance of UNDP .
The reason is as follows. Notice that every odd length (resp., even length) circuit C in G

corresponds to an odd length (resp., even length) circuit C ′ in Ĝ′ with respect to the weight
function h. Since G(V − S) is a bipartite graph, it is free of odd length circuits. So for each
odd length cycle C of G, there exists u ∈ S such that the deletion of all out-bound edges of
u in G′ breaks its corresponding odd length cycle C ′.
(2) If S ′ is a solution to UNDP , then we can construct a solution S of NDBP in the
following manner: for each x ∈ S ′:
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if x = Au,v, add u to T ;
if x = Bu,v, add v to T ;
if x = u or x = v, add x to T .

It is now easy to see that since the graph ĜS′ is free of odd length circuit with respect to h,
G(V − S) has no odd length circuit either.

Hence, we have OPTUNDP (G′, h) ≤ OPTNDBP (G). Moreover, given a solution S ′ of
UNDP , we are able to generate a solution S of NDBP such that

||S| −OPTNDBP (G)| ≤ ||S ′| −OPTUNDP (G′, h)|.

Thus, our reduction satisfies the Definition 5 of a L-reduction with a = b = 1.

5.2 Proof of Theorem 6(b)

Our algorithm for ULP uses the semidefinite programming (SDP) technique used by Goe-
mans and Williamson in [23]; hence we use notations and terminologies similar to that used
in the paper (readers not very familiar with this technique are also referred to the excellent
explanation of this technique in the book by Vazirani [57]). For each vertex v ∈ V , we have
a real vector xv ∈ R|V | with ||xv||2 = 1. Then, we can generate from ULP the following
vector program (where · denotes the vector inner product):

Solve the following vector program via SDP methods:
maximize 1

2

∑
h(u,v)=1

(1− xu · xv) + 1
2

∑
h(u,v)=0

(1 + xu · xv)

subject to: for each v ∈ V : xv · xv = 1 for each v ∈ V : xv ∈ R|V |.
Select a uniformly random vector r in the |V |-dimensional unit sphere and set

f(v) =

{
0 if r · xv ≥ 0
1 otherwise

This proof of the claimed approximation performance of the above vector program is
obtained by adapting the proof in Section 26.5 of [57] for the MAX-2SAT problem to deal with
fact that, in our problem, aij = bij = 1

2
as opposed to a different set of values in [57]. Since

there are some subtleties in adapting that proof for readers unfamiliar with this approach,
we provide a sketch of the proof in the appendix. The procedure can be derandomized via
methods of conditional probabilities (e.g., see [35]).

5.3 Proof of Theorem 6(c)

For an instance of (G, h) of DLP , construct instance (G′ = (V ′, E ′), h′) as follows:

V ′ = V ∪ {Cu,v | (u, v) ∈ E & h(u, v) = 0},

E ′ = {e | e ∈ E & h(e) = 1} ∪ {(u, Cu,v), (Cu,v, v) | (u, v) ∈ E & h(u, v) = 0},
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and
h′(e) = 1 for all e ∈ E ′.

Note that every odd (resp., even) length circuit in G with respect to weight function h
corresponds to an odd (resp., even) length circuit in G′ with respect to weight function h′,
and vice versa. Let F is a set of consistent edges in (G, h) with a vertex labeling function
f . Now, observe the following:

(1) F ′ is a set of consistent edges in (G′, h′) with a vertex labeling function f ′ with f ′(x) =
f(x) for x ∈ V ′ ∩ V and f ′(Cu,v) = f(u) = f(v) for an edge (u, v) ∈ F with h(u, v) = 0;
thus, an edge (u, v) in F correspond to an edge (u, v) in F ′ if h(u, v) = 1 and correspond to
a pair of edges (u, Cu,v), (Cu,v, v) in F ′ if h(u, v) = 0.

(2) If (u, v) ∈ E − F is an inconsistent edge in (G, h), then the edge (Cu,v, v) in G′ can
always be made consistent by choosing f ′(Cu,v) = f(v).

Thus, if F ′′ is the set of consistent edges obtained from F following rules (1) and (2)
above, then |g(E ′ − F ′′)| = |g(E − F )| and thus OPTDLP (G′, h′) = OPTDLP (G, h). Con-

sider the NDBP problem on Ĝ′. Any solution to DLP on (G′, h′) with vertex labeling
function f ′ and set of consistent edges F ′ cannot contain an odd cycle of consistent edges
and thus provides a solution to NDBP on Ĝ′ of size |g(E ′ − F ′)|. Thus, OPTNDBP (Ĝ′) ≤
OPTDLP (G′, h′) = OPTDLP (G, h). OPTNDBP (Ĝ′) can be approximated in polynomial time

to within an approximation ratio of O(log |V ′|) [34], i.e., we can find a solution SNDBP (Ĝ′)

in polynomial time such that |SNDBP (Ĝ′)| ≤ O(log |V ′|) · OPTNDBP (Ĝ′) ≤ O(log |V |) ·
OPTDLP (G, h). Now, SDLP (G, h) = SNDBP (G′)∪{u | ∃v ∈ SNDBP (G′), (u, v) ∈ E}, is obvi-
ously a solution to DLP on (G, h). Remember that dmax

in denotes the maximum in-degree of
any vertex in G. Thus, |SDLP (G, h)| ≤ dmax

in ·|SNDBP (G′)| ≤ dmax
in ·O(log |V |)·OPTDLP (G, h).

6 Examples of Applications of the ULP Algorithm

We have implemented the SDP-based algorithm for calculating approximate solutions of
the undirected labeling problem using Matlab, and we illustrate this algorithm with two
applications to biological systems. The first application concerns the relatively small-scale 13-
variable digraph of a model of the Drosophila segment polarity network. A second application
involves a digraph with 300+ variables associated to the human Epidermal Growth Factor
Receptor (EGFR) signaling network. This model was published recently and built using
information from 242 published papers. Finally, we provide an example involving a yeast
gene regulatory network.

6.1 Drosophila Segment Polarity

An important part of the development of the early Drosophila (fruit fly) embryo is the
differentiation of cells into several stripes (or segments), each of which eventually gives rise to
an identifiable part of the body such as the head, the wings, the abdomen, etc. Each segment
then differentiates into a posterior and an anterior part, in which case the segment is said
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Figure 5: The network associated to the Drosophila segment polarity, as proposed in [16],
Courtesy of N. Ingolia and PLoS. The three edges that have been crossed have been chosen
in order to let the remaining edges form an orthant monotone system.

to be polarized. (This differentiation process continues up to the point when all identifiable
tissues of the fruit fly have developed.) Differentiation at this level starts with differing
concentrations of certain key proteins in the cells; these proteins form striped patterns by
reacting with each other and by diffusion through the cell membranes.

A model for the network that is responsible for segment polarity [16] is illustrated in
Figure 5. As explained above, this model is best studied when multiple cells are present
interacting with each other. But it is interesting at the one-cell level in its own right —
and difficult enough to study that analytic tools seem mostly unavailable. The arrows with
a blunt end are interpreted as having a negative sign in our notation. Furthermore, the
concentrations of the membrane-bound and inter-cell traveling compounds PTC, PH, HH
and WG(membrane) on all cells have been identified in the one-cell model (so that, say, HH→
PH is now in the digraph). Finally, PTC acts on the reaction CI→ CN itself by promoting

it without being itself affected, which in our notation means PTC
+→ CN and PTC

−→CI.

The Implementation The Matlab implementation of the algorithm on this digraph with
13 nodes and 20 edges produced several partitions with as many as 17 consistent edges. One
of these possible partitions simply consists of placing the three nodes ci, CI and CN in one

set and all other nodes in the other set, whereby the only inconsistent edges are CL
+→ wg,

CL
+→ ptc, and PTC

+→ CN. But note that it is desirable for the resulting open loop system
to have as simple remaining loops as possible after eliminating all inconsistent edges. In this
case, the remaining directed loops

EN
−→ ci

+→ CI
+→ CN

−→ en
+→ EN

EN
−→ ci

+→ CI
+→ CN

−→wg
+→ WG

+→ WG(membrane)
+→ en

+→ EN
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Figure 6: A diagram of the Drosophila embryo during early development. Each hexagon
represents a cell containing a copy of the network in Figure 6, and neighboring cells interact
to form a collective behavior. In this example, an initial striped pattern of the genes en and
wg induces the production of the gene hh, but only in those cells that are producing en.
This will further strengthen the pattern of stripes and help differentiate the various tissues.
Courtesy of N. Ingolia and PLoS [28]

can still cause difficulties.

A second partition which generated 17 consistent edges is that in which EN, hh, CN, and
the membrane compounds PTC, PH, HH are on one set, and the remaining compounds on

the other. The edges cut are ptc
+→ PTC, CI

+→ CN and en
+→ EN, each of which eliminates

one or several positive loops. By writing the remaining consistent digraph in the form of a
cascade, it is easy to see that the only loop whatsoever remaining is wg ↔ WG; this makes
the analysis proposed in [21] easier.

In this relatively low dimensional case we can prove that in fact OPT = 17, as the results
below will show.

Lemma 7 Any partition of the nodes in the digraph in Figure 5 generates at most 17 con-
sistent edges.

Proof. From Lemma 3, a simple way to prove this statement is by showing that there are
three disjoint cycles with odd weighted length in the network associated to Figure 5 (disjoint
in the sense that no edge is part of more than one of the cycles). Such three disjoint cycles
exist in this case, and they are CI-CN-wg, CI-ptc-PTC, CN-en-EN-hh-HH-PH-PTC. ❑

It is surprising that a realistic biological system with as many as 13 variables and 20
edges can be transformed into a monotone system after the deletion of only three nodes.
It is conceivable that this restricts the possible dynamics of the system. This is especially
the case given that the open loop digraph has almost no closed oriented paths (except for
WG ↔ wg), which is evidence that the dynamics of the control system under constant inputs
may be especially simple, e.g. such that all solutions converge towards a unique equilibrium.
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Figure 7: A sub-digraph of the network in Figure 5, using the notation defined in the previous
sections. Note that this sub-digraph doesn’t include any of the two edges (WGmem,en) and
(HH,PH), which connect the networks of different cells in Figure 5; this will be important
in the proof of Lemma 9.

Multiple Copies

It was mentioned above that the purpose of this network is to create striped patterns of
protein concentrations along multiple cells. In this sense, it is most meaningful to consider
a coupled collection of networks as it is given originally in Figures 6 and 5. Consider a row
of k cells, each of which has independent concentration variables for each of the compounds,
and let the cell-to-cell interactions be as in Figure 5 with cyclic boundary conditions (that
is, the k-th cell is coupled with the first in the natural way). We show that the results can
be extended in a very similar manner as before.

Given a partition fV of the 1-cell network considered above, let f̂V be the partition of
the k-cell network defined by f̂V (eni) := fV (en) for every i, etc. Thus f̂V consists of k copies
of the partition fV in a natural way.

Lemma 8 Let fV be a partition of the nodes of the 1-cell network with n consistent edges.
Then with respect to the partition f̂V , there are exactly kn consistent edges for the k-cell
coupled model.

Proof. Consider the network consisting of k isolated copies of the network, that is, k groups
of nodes each of which is connected exactly as in the 1-cell case. Under the partition f̂V , this
network has exactly kn consistent edges. To arrive to the coupled network, it is sufficient
to replace all edges of the form (HHi, PHi) by (HHi+1, PHi) and (WGi, eni) by (WGi+1, eni),
i = 1 . . . k (where we identify k + 1 with 1). Since by definition f̂V (HHi+1) = f̂V (HHi) and
f̂V (WGi+1) = f̂V (WGi), the consistency of these edges does not change, and the number of
consistent edges therefore remains constant. ❑

In particular, OPT≥ 17k for the coupled system. The following result will establish an
upper bound for OPT.

Lemma 9 Any partition of the nodes in the digraph in the k-cell coupled network generates
at most 17k consistent edges.
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Proof. Consider the signed graph in Figure 7, which is a sub-digraph of the network as-
sociated to Figure 5. Since the inter-cell edges (WGmem,en) and (HH,PH) are not in this
graph, it follows that there are k identical copies of it in the k-cell model. If it is shown
that at least three edges need to be cut in each of these k sub-digraphs, the result follows
immediately.

Consider the negative cycle ci-CI-wg-CN-en-EN, which must contain at least one incon-
sistent edge for any given partition. The remaining edges of the subgraph form a tetrahedron
with four negative parity triangles, which cannot all be cut by eliminating any single edge.
If follows that no two edges can eliminate all negative parity cycles in this signed graph, and
that therefore 20k − 3k = 17k is an upper bound for the number of consistent edges in the
k-cell network. ❑

Corollary 10 For the k-cell linearly coupled network described in Figure 5, it holds OPT=17k.

Proof. Follows from the previous two results. ❑

6.2 EGFR Signaling

The protein called epidermal growth factor is frequently stored in epithelial tissues such as
skin, and it is released when rapid cell division is needed (for instance, it is mechanically
triggered after an injury). Its function is to bind to a receptor on the membrane of the
cells, aptly called the epidermal growth factor receptor. The EGFR, on the inner side of the
membrane, has the appearance of a scaffold with dozens of docks to bind with numerous
agents, and it starts a reaction of vast proportions at the cell level that ultimately induces
cell division.

In their May 2005 paper [44], Oda et al. integrate the information that has become avail-
able about this process from multiple sources, and they define a network with 330 known
molecules under 211 chemical reactions. The network itself is available from the supplemen-
tary material in SBML format (Systems Biology Markup Language, www.sbml.org), and will
most likely be subject to continuous updates.

The Implementation Each reaction in the network classifies the molecules as reactants,
products, and/or modifiers (enzymes). This information was imported into Matlab using
the Systems Biology Toolbox. The digraph G that is used for this analysis has many more
edges than the digraph considered in the digraph displayed in [44]. The reason for this is
as follows: if molecules A and B are both reactants in the same reaction, then the presence
of A will have an indirect inhibiting effect on the concentration of B, since it will accelerate
the reaction which consumes B (assuming B is not also a product). Therefore a negative
edge must also appear from A to B, and vice versa. Similarly, modifiers have an inhibiting
effect on reactants.

We thus define G by letting sign(i, j) = 1 if there exists a reaction in which j is a product
and i is either a reactant or a modifier. We let sign(i, j) = −1 if there exists a reaction in
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which j is a reactant, and i is also either a reactant or a modifier. Similarly sign(i, j) = 0 if
the nodes i, j are not simultaneously involved in any given reaction, and sign(i, j) is undefined
(NaN) if the first two conditions above are both satisfied.

In a few of the reactions of this network there is a modifier or a reactant involved which has
an inhibitory effect in the reaction. The effect of this compound on the remaining participants
of the reaction is the opposite from that described above. Determining which compounds
were inhibitors in the reaction was difficult given the nature of this dataset. Therefore the
digraph was corrected by hand in this implementation by looking at the annotations given
for each reaction.

An undefined edge can be thought of as an edge that is both positive and negative, and
it can be dealt with, given an arbitrary partition, by deleting exactly one of the two signed
edges so that the remaining edge is consistent. Thus, in practice, one can consider undefined
edges as edges with sign 0, and simply add the number of undefined edges to the number of
inconsistent edges in the end of each procedure, in order to form the total number of inputs.
This is the approach followed here; there are exactly 7 such entries in the digraph G.

The Results After running the algorithm several hundred times for this problem, and
choosing that partition which produced the highest number of consistent edges, the induced
consistent set contained 636 out of 855 edges (ignoring the edges on the diagonal and the
7 undefined edges). See the supplementary material for the relevant Matlab functions that
carry out this algorithm. A procedure analogous to that carried out for system ( 5) allows
to decompose the system as the feedback loop of a controlled monotone system using 855−
636 = 219 inputs. Since the induced consistent set is maximal by definition, Proposition 2
guarantees that the function h is a negative feedback.

Contrary to the previous application, many of the reactions involve several reactants and
products in a single reaction. This induces a denser amount of negative and positive edges:
even though there are 211 reactions, there are 855 (directed) edges in the 330 × 330 graph
G. It is very likely that this substantially decreases OPT for this system.

The approximation ratio of the SDP algorithm is guaranteed to be at least 0.87 for some
r, which gives the estimate OPT≤≈ 636/0.87 ≈ 731 (valid to the extent that r has sampled
the right areas of the 330-dimensional sphere, but reasonably accurate in practice).

One procedure that can be carried out to lower the number of inputs is a hybrid algorithm
involving out-hubs, that is, nodes with an abnormally high out-degree. Recall from the
description of the DLP algorithm that all the out-edges of a node xi can be potentially cut
at the expense of only one input u, by replacing all the appearances of xi in fj(x), j 6= i, by
u. We considered the k nodes with the highest out-degrees, and eliminated all the out-edges
associated to these hubs from the reaction digraph to form the graph G1. Then we run the
ULP algorithm on G1 to find a partition fV of the nodes and a set of m edges that can be
cut to eliminate all remaining negative closed chains. Finally, we put back on the digraph
those edges that were taken in the first step, and which are consistent with respect to the
partition fV . The result is a decomposition of the system as the negative feedback loop of a
controlled monotone system, using at most k + m edges.
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An implementation of this algorithm with k = 60 yielded a total maximum number of
inputs k + m = 136. This is a significant improvement over the 226 inputs in the original
algorithm. Clearly, it would be worthwhile to investigate further the problem of designing ef-
ficient algorithms for the DLP problem to generate improved hybrid algorithmic approaches.
The approximation ratios in Theorem 6(c) are not very satisfactory since dmax

in and log |V |
could be large factors; hence future research work may be carried out in designing better
approximation algorithms.

We conclude with another, more tentative way to drastically reduce the number of inputs
necessary to write this system as the negative closed loop of a controlled monotone system.
The idea is to make suitable changes of variables in the original system using the mass
conservation laws. Such changes of variables are discussed in many places, for example
in [58] and [5]. In terms of the associated digraph, the result of the change of variables is
often the elimination of one of the closed chains. The simplest target for a suitable change
of variables is a set of three nodes that form part of the same chemical reaction, for instance
two reactants and one product, or one reactant, one product and one modifier. It is easy
to see that such nodes are connected in the associated digraph by an odd length triangle of
three edges.

In order to estimate the number of inputs that can potentially be eliminated by suitable
changes of variables, we counted pairwise disjoint, odd length triangles in the digraph of
the EGFR network. Using a greedy algorithm to find and tag disjoint negative feedback
triangles, we found a maximal number of them in the subgraph associated to each of the
211 chemical reactions. Special care was taken so that any two triangles from different
reactions were themselves disjoint. After carrying out this procedure we found 196 such
triangles in the EGFR network. This is a surprisingly high number, considering that each
of these triangles must have been opened in the ULP algorithm implementation above and
that therefore each triangle must contain one of the 226 edges cut. To the extent to which
most of these triangles can be eliminated by suitable changes of variables, this can yield a
much lower number of edges to cut, and it could provide a way to thus stress the underlying
structure of the system.

6.3 A yeast regulatory network

As a final example, we run our algorithm on the yeast Saccharomyces cerevisiae gene reg-
ulatory network from [38], downloaded from [39]. This network has 690 nodes and 1082
edges, of which 221 are negative and 861 are positive (we labeled the one “neutral” edge as
positive; the conclusions will not change if we labeled it negative instead, or we deleted this
one edge).

Our algorithm (50 randomizations) provides an answer of 43 inconsistent edges for the
best partition found. In other words, it is estimated that deleting a mere 4% of edged makes
the network consistent.

To better appreciate if this small number of deletions may be arise by chance, we also run
our algorithm on random (Erdős-Rényi) graphs having 690 nodes and 1082 edges in which
221 edges are negative. We found that, for such random graphs, about 12.6% (136.3± 6.2)
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of edges have to be removed in order to achieve consistency. Thus, the number of deletions
needed in the biological network is roughly 15 standard deviations away from the mean for
random graphs.

Both the topology (i.e. the underlying graph) and the actual sign assignments contribute
to this near-consistency of the yeast network: after randomly changing the signs of 50 positive
and 50 negative edges (a network having the same number of positive and negative edges,
and the same underlying graph, but with 100 edges with different signs) one needs 8.2%
(88.3± 7.1) deletions, an amount in between the original yeast network and random graphs.
Changing more signs, 100 positives and 100 negatives, leads to a less consistent network,
with 115.4± 4.0 required deletions, or about 10.7% of the original edges, although still not
as many as for a random network.

7 Supplementary Material: MATLAB Implementation

Files

A set of MATLAB programs have been written to implement the algorithms described in
this paper. They can be accessed from the following URL:

http://www.math.rutgers.edu/~sontag/desz_README.html.

The appendix contains more details about these algorithms.
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APPENDIX

A More Details on SDP Algorithm

In this appendix, we provide details regarding the proof of the SDP algorithm for Theo-
rem 6(b) described in Section 5.2. The proof method is similar to that used in better-known
problems. For simplicity, we do not describe the derandomization methods and provide a
proof for the expected approximation ratio only. Define the following notations for conve-
nience:

• The vertex set V of the graph for ULP is simply {1, 2, . . . , |V |};

• fOPT is an optimal vertex labeling for ULP with FOPT being the set of consistent edges;

• SDPOPT is the maximum value of the objective value of the vector program

maximize 1
2

∑
h(u,v)=1

(1− xu · xv) + 1
2

∑
h(u,v)=0

(1 + xu · xv)

subject to: for each v ∈ V : xv · xv = 1
for each v ∈ V : xv ∈ R|V |

It is easy to see that SDPOPT ≥ |FOPT| as follows. For every v ∈ V if fOPT(v) = 0 then set

xv = (1, 0, 0, . . . , 0︸ ︷︷ ︸
|V |−1|

),

whereas if fOPT(v) = 1 then set

xv = (−1, 0, 0, . . . , 0︸ ︷︷ ︸
|V |−1|

);

this provides a solution for the vector program with an objective value of precisely |FOPT|.
Thus, it suffices if we prove our claim on the approximation ratio relative to SDPOPT

Next, note that the vector program can indeed be solved by a SDP approach. Let
Y ∈ R|V |×|V | be an unknown real matrix with yi,j denoting the (i, j)th element of Y . It is
not difficult to see (via Cholesky decomposition for real symmetric matrices) that the above
vector program is equivalent to the following semidefinite programming problem:

maximize 1
2

∑
h(u,v)=1

(1− yu,v) + 1
2

∑
h(u,v)=0

(1 + yu,v)

subject to: for each v ∈ V : yv,v = 1
Y is a positive semidefinite matrix
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Such a problem can be solved in polynomial time within an additive error of any constant
ε > 0 via ellipsoid, interior-point or convex-programming methods [1, 24, 42, 43, 56].

Let θu,v denote the angle between the two vectors xu, xv ∈ R|V | in an optimal solution of
the vector program. Then, using standard trigonometric results,

SDPOPT =
1

2

∑
h(u,v)=1

(1− cos θu,v) +
1

2

∑
h(u,v)=0

(1 + cos θu,v).

Let W be the expected value of the number of consistent edges of ULP after we have
performed the randomized rounding step, namely the step:

select a uniformly random vector r in the |V |-dimensional unit sphere;

set f(v) =

{
0 if r · xv ≥ 0
1 otherwise

Then, via linearity of expectation, it follows that

E[W ] =
∑

h(u,v)=1

Pr[f(u) 6= f(v)] +
∑

h(u,v)=0

Pr[f(u) = f(v)].

Because the vector r was chosen randomly, it is true that

Pr[f(u) 6= f(v)] =
θu,v

π
and Pr[f(u) = f(v)] = 1− θu,v

π
.

Thus,

E[W ] =
∑

h(u,v)=1

θu,v

π
+

∑
h(u,v)=0

(
1− θu,v

π

)

≥ ∆ ·

1

2

∑
h(u,v)=1

(1− cos θu,v) +
1

2

∑
h(u,v)=0

(1 + cos θu,v)


= ∆ · SDPOPT

where

∆ = min

{
2

π
min

0≤θ≤π

θ

1− cos θ
, min

0≤θ≤π

2− 2θ
π

1 + cos θ

}
can be shown to satisfy ∆ > 0.87856 using elementary calculus.

A.1 Proof of Lemma 3

Proof. Suppose that the system is monotone with respect to ≤fV
, that is,

fV (i)fV (j)fE(i, j) = 1 for all i, j, i 6= j.
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(by Lemma 2). Let V (G) = A ∪ B, where i ∈ A if fV (i) = 1, and i ∈ B otherwise. Note
that by hypothesis fE(i, j) = 1 if xi, xj ∈ A or if xi, xj ∈ B. Also, fE(i, j) = −1 if xi ∈ A,
xj ∈ B or vice versa. Noting that every closed chain in G must cross an even number of
times between A and B, it follows that every closed chain has parity 1.

Conversely, let all closed chains in G have parity 1. We define a function fV as follows:
consider the partition of V (G) induced by letting i ∼ j if there exists an undirected open
chain joining i and j. Pick a representative ik of every equivalence class, and define fV (ik) =
1, k = 1, . . . , K. Next, given an arbitrary vertex i and the representative ik of its connected
component, define fV (i) as the parity (+1 of −1) of any undirected open chain joining ik
with i. To see that this function is well defined, note that any two chains joining i and j
can be put together into a closed chain from ik to itself, which has parity 1 by hypothesis.
Thus the parity of both open chains must be the same.

Let now i, j be arbitrary different vertices. If ∂Fj/∂xi ≡ 0, then (2) is satisfied for i, j;
otherwise there is an edge joining i with j. By construction of the “potential” function fV ,
it holds that if fV (i) = fV (j) then fE(i, j) = 1, i.e., ∂Fj/∂xi ≥ 0, and so (2) holds as well.
If fV (i) 6= fV (j), then fE(i, j) = −1, i.e. ∂Fj/∂xi ≤ 0. In that case (2) also holds, and the
proof is complete. ❑

B Supplementary Material: MATLAB Implementation

Files (more details)

A set of MATLAB programs have been written to implement the algorithms described in
this paper. They can be accessed from the following URL:

http://www.math.rutgers.edu/~sontag/desz_README.html

The files in this directory are MATLAB functions and scripts in .m format. They can be
opened using any text editor, and each contains descriptions regarding its purpose and use.
Two useful packages to be used when running these functions are:

1. The Systems Biology Toolbox for MATLAB, which allows for networks in SBML format
to be imported into the MATLAB environment. This toolbox also allows for processing
of the MATLAB structures as well as the creation of SBML format files from MATLAB
structures. It can be downloaded at http://sbml.org/.

2. The SeDuMi Optimization Toolbox, one of the most popular implementations of the
SDP algorithm for MATLAB. It is freely available for download at http://sedumi.mcmaster.ca/.

The most important functions in this directory are listed below:

(i) ReactionDigraph.m: this function receives a model in SBML format and produces the
associated reaction digraph associated to the reaction.
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(ii) RepeatPartition.m: this function produces a partition p which optimizes the number
of consistent edges of a given signed digraph G. It implements the SDP-based ULP
algorithm.

(iii) DLPtrim.m: this function implements the hybrid ULP-DLP algorithm mentioned in the
end of the discussion of the SGFR network.

(iv) PlunderNTriangle.m: this function uses a greedy algorithm to eliminate odd parity,
pairwise disjoint triangles from a given subgraph of a signed digraph G (to be used in
connection to the discussion regarding changes of variables to eliminate inputs in the
decomposition).
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