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Abstract

For feedback loops involving single input, single output monotone systems with
well-defined I/O characteristics, a recent paper by Angeli and Sontag provided an
approach to determining the location and stability of steady states. A result on
global convergence for multistable systems followed as a consequence of the tech-
nique. The present paper extends the approach to multiple inputs and outputs.
A key idea is the introduction of a reduced system which preserves local stability
properties.
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1 Introduction

The study of stability properties for systems having multiple steady states is
of great importance, as such systems possess a “memory” of past states, and,
as components of larger systems, can act as switches, or underlie relaxation os-
cillators. A result on global convergence for multistable systems was presented
in the article [2]. That work presented a reduction principle for unity feedback
loops involving single input, single output models which admit a well-defined
I/O characteristic and satisfy a monotonicity condition. The reduction was to
a discrete-time one-dimensional iteration.

1 E-mail: enciso@eden.rutgers.edu.
Supported in part by AFOSR Grant F49620-01-1-0063, NIH Grant P20 GM64375,
and Dimacs.
2 E-mail: sontag@control.rutgers.edu.
Supported in part by AFOSR Grant F49620-01-1-0063 and NIH Grant R01
GM46383.

Preprint submitted to Elsevier Science 17 July 2004



This note is a follow-up, where we extend the result to the multivariable case.
The key idea is to introduce a continuous-time reduced system which preserves
local stability properties. This reduced system is often easier to analyze than
the original one, since its dimension equals the number of inputs (or outputs),
which is typically very small. Model reduction is a powerful analysis tool in
differential equations and control theory. The two most used approaches are
those involving energy considerations, where only the “largest” components,
as measured in an appropriate norm, are kept (see e.g. [5]), and classical time-
scale separation (singular perturbation techniques). The approach proposed
in [2], and extended here, is completely different to these two.

In this paper, we deal with systems with inputs and outputs, as usual in
control theory ([17]):

ẋ = f(x, u), y = h(x) , (1)

with u(t) ∈ U and y(t) ∈ Y , but we assume that the input-value and output-
value spaces coincide (U = Y is a subset of some Euclidean space Rm; states
evolve in some subset X ⊆ Rn). We assume that U = Y because our goal is
to analyze the stability properties of the closed loop system

ẋ = f(x, h(x)) (2)

which arises under unity feedback. More general feedback interconnections
can be reduced to a unity feedback configuration for purposes of applying
these techniques (see for instance the discussion in [3]). We illustrate with an
example how to rewrite a given system in a form suitable for application of
our theory.

The main assumptions are that the open-loop system (1) is monotone with
respect to cones Km, Kn, and Km in the input-value, state, and output-value
spaces, and that it admits a nondegenerate I/S characteristic kX : U → X. We
denote the corresponding (nondegenerate) I/O characteristic as k = h ◦ kX :
U → U . In our main result we will establish a connection between (1) and the
reduced system:

u̇ = k(u) − u. (3)

Theorem 1 Let (1) be a monotone system that admits a nondegenerate I/S
characteristic kX and an I/O characteristic k with nondegenerate fixed points,
and assume that the closed loop system (2) is strongly monotone. Then the
function ū → kX(ū) forms a bijective correspondence between the locally as-
ymptotically stable points of the monotone system u̇ = k(u) − u and those
of (2). Furthermore, almost all bounded solutions of (2) converge to one of
these asymptotically stable points.
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This reduction allows to study the global stability properties of the full sys-
tem (1) in terms of the reduced system, which has, in general, much lower
dimensionality than (1). In [2], a result was proved that is equivalent to this
one for the special case of scalar inputs and outputs (m = 1). This scalar result
was formulated in terms of a discrete-time condition involving derivatives of k.
One of the main contributions of the present paper is the re-interpretation of
that condition in terms of the reduced-order continuous-time system (3). This
re-interpretation is crucial to the generalization that we gave in Theorem 1.
Theorems 1 and 2 are the exact counterparts of Theorem 3 and Lemma 6.6
of [2], respectively, even though the statements are written somewhat differ-
ently. The main theorem is of use in a number of applications, especially in
biological signaling networks with multiple steady states and/or presenting
hysteresis effects; see [1–4,18].

One of the most interesting implications of this methodology lies in the fact
that the mapping k can be often obtained from experimental data (“dose re-
sponse” curves in pharmacology, for example), even when knowledge of the
system (1) is poor because of uncertainty in the form of equations, or un-
known or unmeasurable parameters. Provided that general qualitative knowl-
edge about the system is available (insuring the appropriate assumptions for
the system to apply), one can then mathematically conclude stability from
the input/output data provided by k. This is discussed in detail in [3,18].

The organization of this paper is as follows. After stating some basic defin-
itions, we first establish a number of preliminary results about positive ma-
trices, followed by the local version of the result (linear systems). Theorem 1
will then follow by combining this local result with a global convergence theo-
rem due to Hirsch. After this, we discuss an example, and we study sufficient
conditions for closed-loops to be strongly monotone.

2 Definitions

Let K ⊆ Rn be a cone, by which we mean a set that is nonempty, convex, closed
under multiplication by positive scalars, and pointed (i.e. K∩(−K) = {0}). We
will also assume that K is closed and has nonempty interior (it is “proper”).
The cone K induces the partial order given by: x ≤ y iff y − x ∈ K, and the
stronger order x � y iff y − x ∈ intK. We also say that x < y if x ≤ y and
x 6= y.

Assume given a system (1), where the state space X ⊆ Rn is the closure of an
open set, the input- and output-value set U is also the closure of an open set,
and f and h are continuously differentiable. We also assume given two proper
cones Kn ⊂ Rn and Km ⊆ Rm. By an input we mean a measurable essentially
bounded map u : R+ → U and write “u ≤ v” for two inputs provided that
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u(t) ≤ v(t) for almost all t. (We abuse notation and use letters such as u to
denote both an input value –element of U– or an input, depending on the
context.)

The system (1) is monotone with respect to Kn,Km if h is a monotone function,
that is x ≤ y implies h(x) ≤ h(y), and the flow preserves the order, i.e., the
following property is satisfied:

For any two inputs u, v such that u ≤ v, and any two initial conditions
x1, x2 ∈ X such that x1 ≤ x2, it holds that x(t, x1, u) ≤ x(t, x2, v) for all
t ≥ 0.

Here, x(t, x0, u) is the solution of the system (1) with initial condition x0,
evaluated at time t, and the relations ≤ are defined as in the previous section
for each cone, and interpreted as ≤U or ≤X in the obvious manner. Systems
with no inputs can be seen as a particular case (using an input value space
consisting of just one point); such a system is monotone if x1 ≤ x2 implies
x(t, x1) ≤ x(t, x2) for all t. We will always understand “for all t” to mean
for all times t belonging to the common domain of definition of the solutions
involved.

A system of the form (1) is said to be strongly monotone if u ≤ v, x1 < x2

implies x(t, x1, u) � x(t, x2, v) ∀t. We also assume in this case that x � y
implies h(x) � h(y) (we say that h itself is strongly monotone).

It is useful to be able to test monotonicity directly in terms of vector fields.
In [1], two characterizations are provided, one in terms of nonsmooth analysis
and valid for abstract monotone dynamics (even with respect to arbitrary
partial orders), and a second one, quoted next, based upon a generalization to
systems with inputs of the concept of quasi-monotonicity, the latter of which
was introduced by Schneider and Vidyasagar, and used later by Volkmann
(see [14,20]). The system (1) is monotone if and only if

x ∈ X, u ∈ U, h ∈ Kn, v ∈ Km, φ ∈ K∗
n, and σ(h) = 0

⇒ σ(f(x + h, u + v) − f(x, u)) ≥ 0
(4)

where K∗
n = {σ ∈ (Rn)∗|σ(x) ≥ 0 ∀x ≥ 0}.

When the state space and input value space are convex, we can rewrite this
condition as follows:

x ∈ X, u ∈ U, h ∈ Kn, v ∈ Km, σ ∈ K∗
n, and σ(h) = 0

⇒ σ (fx(x, u)h + fu(x, u)v) ≥ 0
(5)
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where fx and fu denote the Jacobians of f with respect to the x and u variables
respectively (see [13] for an analogous observation for systems with no inputs).
As an illustration, we show that the autonomous system (3) is monotone,
where k : U → U is any monotone function. By condition (4), it is enough to
note the following. If u ≤ v, and σ ∈ K∗ such that σ(u) = σ(v), then

σ(k(v) − v) − σ(k(u) − u) = σ(k(v) − k(u)) ≥ 0 .

2.1 Characteristics

We say that (1) has a well-defined input to state characteristic kX : U → X if
for every constant input u(t) ≡ u ∈ U , x(t, x0, u) converges to kX(u) for every
initial condition x0 ∈ X. In that case we refer to k = h ◦ kX as the system’s
input to output characteristic. We will also assume throughout in this text
that the characteristic kX is nondegenerate, that is, det fx(k

X(u), u) 6= 0 for
every u ∈ U .

We say that k has nondegenerate fixed points if det (k′(ū) − I) 6= 0 (i.e., k′(u)
has no eigenvalues equal to one) for each ū fixed point of k (not to confuse
with the previous definition).

Suppose given a system (1) which is both monotone and admits an I/O char-
acteristic k. Then k is a monotone function. This is proved as follows. Pick
any two elements u ≤ v in U , and consider the corresponding constant in-
puts u(t) ≡ u and v(t) ≡ v as well as an arbitrary initial state x0. By
monotonicity, x(t, x0, u) ≤ x(t, x0, v). Letting t tend to infinity, we conclude
that k(u) ≤ k(v).

We finally turn to the question of showing that system (3) has well defined
and unique solutions. Note that the function kX is defined as a level curve
of f(x, u), where the latter function can be extended in the first variable to
an open domain covering X × U , from the definition of differentiability on a
closed domain. By the implicit function theorem, and using the nondegeneracy
hypothesis, we have that kX itself is a continuously differentiable function
on the state space, boundary points included. Composing with the output
function h, after applying similar remarks, we see that k(u) is C1 on U and its
boundary points. Thus system (3) has unique, maximally defined solutions.

3 Preliminaries on Positive Matrices

We begin with a definition. Given a cone K ⊆ Rn, an n × n matrix A is
called inverse-positive with respect to K if for every x ∈ Rn, Ax ≥ 0 implies
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x ≥ 0. We note first that an inverse-positive matrix A must be invertible: if
Ax = 0, then also A(−x) = 0, which implies x ∈ K, −x ∈ K, and x = 0.
Also, it is easy to see that A−1K ⊆ K, and that these two conditions imply
inverse-positivity.

We quote the following results without proof from Plemmons et al, [6], p. 113
and p. 10 respectively. (That reference also calls inverse positive matrices K-
monotone.) By a Hurwitz matrix M , we mean, as usual, one for which Reλ < 0
for any eigenvalue λ of M , and we denote by ρ(M) the spectral radius of a
matrix M .

Lemma 1 Let A = αI −B, α > 0, and assume BK ⊆ K. Then the following
conditions are equivalent:

(1) A is inverse-positive.
(2) ρ(B) < α
(3) −A is Hurwitz

Lemma 2 Let A = αI−B, α > 0, BK ⊆ K, and suppose that A is invertible
and Ax > 0 for some x � 0. Then A is inverse-positive.

4 Linear Systems

Consider a linear system ẋ = Ax + Bu, y = Cx that is monotone and admits
well defined (and necessarily nondegenerate) I/S and I/O characteristics. We
close the system by unity feedback, letting u = y = Cx, thus forming an au-
tonomous dynamical system. It is easy to compute the I/O characteristic from
the equation Ax+Bu = 0 for a fixed u ∈ U , namely k(u) = −CA−1Bu . Thus
k′(0) = −CA−1B; this will be important for the statement of the following
theorem, which is equivalent to Lemma 6.6 in [2] (see also the remark after
the proof).

Theorem 2 Let ẋ = Ax + Bu, y = Cx, with A ∈ Rn×n, B ∈ Rn×m, C ∈
Rm×n, be a linear system that admits an I/O characteristic k and is monotone
with respect to cones Kn and Km in the input-value and state spaces. Assume
that det (I + CA−1B) 6= 0. Then A + BC is Hurwitz iff − (I + CA−1B) is
Hurwitz. In other words, the closed loop system is exponentially stable iff the
linear system u̇ = k(u) − u is exponentially stable.

Proof. The unity-feedback system is given by ẋ = (A + BC)x. The hypothe-
ses of monotonicity and existence of characteristic on the linear system are
equivalent to the following requirements: i) the positivity cone Kn is positively
invariant for the system ẋ = Ax; ii) BKm ⊆ Kn; iii) CKn ⊆ Km; and iv) A is
a Hurwitz matrix. See [2,8] for a proof of this equivalence and other properties
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of monotone (positive) linear systems.

Since A+BC is such that ẋ = (A+BC)x is monotone, there exists a Perron-
Frobenius eigenvalue for A + BC, that is, a number λ ∈ R with maximal
real part among the eigenvalues of A + BC, and such that (A + BC)v = λv
for some v > 0. (This is standard; see for example Lemma 6.2 of [2].) Also, it
holds that −CA−1B K ⊆ K, since k is a monotone increasing function. By the
Perron-Frobenius theorem there exists a real eigenvalue µ = ρ(−CA−1B) − 1
of −CA−1B−I with maximal real part; the nondegeneracy hypothesis implies
that µ 6= 0.

Observe that A + BC is Hurwitz if and only if λ < 0, and −I − CA−1B is
Hurwitz if and only if µ < 0. So we must prove that λ < 0 if and only if µ < 0.
By multiplying on both sides by CA−1 we obtain : (I+CA−1B)Cv = λCA−1v.
We prove that λ 6= 0: if λ were zero, then det (I + CA−1B) 6= 0 would imply
Cv = 0 and Av = (A + BC)v = 0, contradicting the fact that A is a Hurwitz
matrix. Note also that Cv ≥ 0 and CA−1v = −

∫ ∞
0 CeAtv dt ≤ 0 .

Suppose first that Cv � 0. By continuity of the integrand, we conclude that
CA−1v � 0. If λ < 0, we can apply Lemma 2 (with “α” = 1, “B” = −CA−1B,
“A” = I + CA−1B, and “x” = Cv) to conclude that I + CA−1B is inverse-
positive, and therefore, by Lemma 1, that −(I + CA−1B) is Hurwitz.

Conversely, if −(I + CA−1B) is Hurwitz, then, once again appealing to Lemma 1,
we know that I+CA−1B is inverse-positive. Then, from (I+CA−1B)(−λ−1)Cv =
−CA−1v, we conclude that (−λ−1)Cv > 0 or λ < 0.

Finally, let us consider the general case, Cv ≥ 0. We show the existence of
an m × n matrix P with Px � 0 for each x > 0: since Kn is closed and
pointed, there must be some (n − 1)–dimensional hyperplane H ⊆ Rn whose
intersection with Kn is {0}. Letting w ∈ Rn have norm equal to 1 and be
perpendicular to H, we have without loss of generality x · w > 0, for every
x > 0. Let now B be a basis of Rn consisting of an orthonormal basis of H,
together with w. Then B itself is orthonormal.

We can define a linear transformation P : Rn → Rm by freely defining the
value of P at each of the elements of B, and we do so by setting P (w) � 0
and P (b) = 0 for all other b ∈ B. Given x > 0, one can write x as linear
combination of the base elements, and the coefficient associated with each
b ∈ B is b · x. Since P (b) = 0 except for b = w, our assertion follows from

P (x) = P ((x · w)w) = (x · w)P (w) � 0.

Let now Cε = C +εP , for ε > 0 small enough so that det (I + CεA
−1B) 6= 0.

Thus we can repeat the procedure above with this new matrix, and we have,
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for λε, µε denoting the stability modulus of A + BCε and −(I + CεA
−1B)

respectively, that λε < 0 if and only if µε < 0. By continuity of eigenvalues on
both sides of the equivalence under continuous changes in matrix entries, the
result follows, taking into account that λ 6= 0, µ 6= 0.

The second conclusion of Lemma 6.6 in [2] also holds here in a multidimen-
sional version: since λ 6= 0, µ 6= 0, and λ < 0 iff µ < 0, it must hold that λ > 0
iff µ > 0. That is, there exists a positive eigenvalue of A + BC if and only if
there exists a positive eigenvalue of −(I + CA−1B).

Recall that if a linear system is asymptotically stable, then all of its eigenvalues
must have negative real part, and the system is therefore exponentially stable.
From the proof of the previous theorem we can deduce a similar property for
monotone systems, that we explicitly state below.

Lemma 3 Let ẋ = F (x) be a monotone system under some proper cone,
F (x̄) = 0, and det ∂F

∂x
(x̄) 6= 0. Then x̄ is asymptotically stable if and only if it

is exponentially stable.

Proof. We prove the only nontrivial direction: let x̄ be an asymptotically stable
equilibrium, which implies that the real parts of all eigenvalues of the matrix
A = det ∂F

∂x
(x̄) are smaller or equal than zero (see for instance Corollary 5.8.7

of [17]). By monotonicity of A, there is a Perron-Frobenius eigenvalue λ as-
sociated to it, that is, a real eigenvalue such that Re λ is larger than the real
part of any other eigenvalue of A; see Lemma 6.2 of [2]. But by hypothesis
λ 6= 0 — thus λ < 0 and exponential stability follows.

5 Proof of Theorem 1

Now we are ready to prove the main result. In the case that m = 1, the
condition that ū be a stable equilibrium of the reduced system (3) is equivalent
to asking that k(ū) = ū and k′(ū)−1 < 0, since by nondegeneracy k′(ū)−1 6=
0. This is just the condition k′(ū) < 1 used in [2].

Proof. Much of the proof is identical to that of Theorem 3 in [2]; the supporting
Lemmas 6.4 and 6.5 in that paper were actually proven for finite-dimensional
inputs. For ū an equilibrium point of (3), that is k(ū) = ū, let the linearization
of the open system around ū and kX(ū) be denoted as ẋ = Ax+Bu, y = Cx.
The hypotheses of Lemma 3 are satisfied both for ū in the reduced system and
for x̄ = kX(ū) in the closed loop system, by nondegeneracy of fixed points in
the former, and since det A+BC 6= 0 in the latter; see the proof of Theorem 2.
We therefore have that ū is asymptotically stable in the reduced system if and
only if it is exponentially stable in the reduced system (by Lemma 3), if and
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only if x̄ is exponentially stable in the closed loop system (By Theorem 2), if
and only if x̄ is asymptotically stable in the closed loop system.

The important generic convergence result proven by Hirsch in the late 1980’s
can be stated in our framework as follows: given an autonomous system that
is strongly monotone with respect to some proper cone, almost every initial
condition with bounded solution has a limit set contained in the set of equi-
libria; see Theorem 7.8 in [9]. In the case that the set of equilibria is discrete,
as it is here, we can conclude that almost every bounded solution converges
to an equilibrium point.

Let λ ∈ R be the Perron-Frobenius eigenvalue associated with A + BC after
linearizing around an unstable equilibrium point x̄. By unstability and since
we know λ 6= 0, we have λ > 0; thus x̄ is a hyperbolically unstable equilibrium
of the closed loop system, and it follows (see [2] and de la Llave et al. [10])
that the set of initial conditions that converge toward x̄ in the closed loop
system has measure zero. Thus almost all bounded solutions converge to one
of the equilibria corresponding to a locally exponentially stable steady state
of the reduced system, as stated.

Note that under the present hypotheses merely asymptotic stability is actually
ruled out: an equilibrium point is either exponentially stable, or unstable with
some eigenvalue with positive real part.

This theorem provides a way to describe the behavior of a complex monotone
system in terms of a potentially much simpler, associated system. For m = 2
a graphical analysis as in [2,3] is also possible, by plotting the vector field
k(u) − u on the input space, and observing which equilibria appear to be
stable (see example below).

In the case that (3) is itself strongly monotone and has bounded solutions,
one can actually apply Hirsch’s theorem to it and deduce that almost all
trajectories converge toward one of the stable steady states. The question
arises as to whether the analogy between the two systems could be carried
further: if the output function h were surjective, does it hold that x(t, x0)
converges to x̄ if and only if u(t, h(x0)) converges to h(x̄)? In other words, do
the basins of attraction of each stable point correspond to each other, as the
stable points do? Unfortunately this is not true, as the example below will
illustrate.

6 An Example

We illustrate the main result with an example of a coupled biological circuit.
An important class of proteins, referred to as transcription factors, regulate
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transcription of messenger RNA by promoting (or inhibiting) the binding of
the enzyme RNA polymerase to the DNA sequence. An autoregulatory tran-
scription factor regulates the production of its own messenger RNA. Tran-
scription factors are very common, and often more than one is necessary for
RNA polymerase to initiate transcription. For a mathematical analysis of the
simple autoregulatory circuit, see [15] 3 .

Let p1, p2 be two autoregulatory transcription factors, and r1, r2 their corre-
sponding messenger RNAs. We will couple the circuits by assuming that the
proteins are also needed to regulate each other’s transcription. The dynamics
of the circuit is thus expressed as follows:

ṗi = airi − bipi

ṙi = gi(p1, p2) − ciri

i = 1, 2. (6)

We assume that both g1(p1, p2) and g2(p1, p2) are increasing functions of both
p1 and p2, as well as positive and bounded. The interconnections are illus-
trated in Figure 1. In particular, note that all the solutions of this system are
bounded.

p

p1

r1

r2

2

Fig. 1. Interconnections for system 6. The dotted lines indicate where the intercon-
nections will be cut and replaced by inputs.

We analyse the dynamics of this system by cutting the arcs as indicated in
the figure, and we arrive to the following controlled system with two inputs:

ṗi = aiui − bipi

ṙi = gi(p1, p2) − ciri

i = 1, 2. (7)

which is monotone under the usual positive orthant cone. If we fix the input

3 The standard model in p. 58 of [15] is in fact another interesting application of
Theorem 1: by cutting the arc xn → x1 as explained in our example, the results in
Section 4.2, [15], follow by looking at the fixed points of k(u) = α−1

1 . . . α−1
n g(u).

Furthermore, the local stability of each equilibrium is determined by the slope of
k(u) at each corresponding fixed point.
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(u1, u2), the system converges toward the point pi = ai

bi
ui, ri = 1

ci
gi

(
a1

b1
u1,

a2

b2
u2

)
,

which constitutes the value of kX at the point (u1, u2). Note that the arcs cut
in Figure 1 are chosen so as to leave the digraph with no directed loops in
order for the characteristic to be well defined, while minimizing the number
of inputs. Also, two cuts are the minimum since there are two disjoint, di-
rected loops in the digraph. Since we want the closed loop to be (6), we need
h(p1, p2, r1, r2) = (r1, r2), which when composed with kX yields

k(u, v) =
(

1

c1

g1

(
a1

b1

u1,
a2

b2

u2

)
,

1

c2

g2

(
a1

b1

u1,
a2

b2

u2

))
.

Under mass action kinetics assumptions, a quasi-steady state analysis (see [12])
yields for the gi the general form gi = σ̂i(p

mi
1 pni

2 )/(K̂i + pmi
1 pni

2 ). The coeffi-
cients mi, ni describe the cooperativity with which the proteins bind to the
DNA sequence. For instance, if two p1 proteins bind to each other (forming
a dimer) before acting on the DNA sequence of pi, then mi = 2. It is a rea-
sonable assumption that the cooperativity of a protein is the same for both
DNA sequences, that is m1 = m2 = m, n1 = n2 = n. We set for simplicity
m = 2, n = 1. The remaining coefficients K̂i, σ̂i are determined by the way the
proteins bind to the particular DNA sequence and how they aid the polymerase
enzyme. We have k(u1, u2) = (σ1(u

2
1u2)/(K1 + u2

1u2), σ2(u
2
1u2)/(K2 + u2

1u2)),
where σi = σ̂ic

−1
i , Ki = K̂ia

−2
1 b−2

1 a−1
2 b−1

2 . Apart from the trivial solution
(0, 0), the equation k(u1, u2) = (u1, u2) can be rewritten as K1 + u2

1u2 =
σ1u1u2, K2u2 + u2

1u
2
2 = σ2u

2
1u2 We solve for u1 in the first equation above

and replace in the second equation, obtaining K1u
2
1 = (σ2u

2
1 −K2)(σ1 −u1)u1.

From Figure 2 we see that there might be only one nonnegative solution of

−
√

K2
σ2

√
K2
σ2

σ1 u1

(σ2u2
1−K2)(σ1−u1)u1

K1u2
1

Fig. 2. The solutions of the equation k(u1, u2) = (u1, u2)

k(u1, u2) = (u1, u2) (i.e., the trivial solution u1 = 0), or there may be three
nonnegative solutions, in the case that K1, K2 are comparatively small. The-
orem 1 can be used here to establish a correspondence between these points
and the equilibrium points of (6), which sends stable states (of the system
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u̇ = k(u) − I) to stable states of (6). Thus, by verifying that there are two
stable points and one unstable point in u̇ = k(u)− I, we will have shown that
the same holds for (6). See Figure 3 for an illustration of this in the partic-
ular case σ1 = 4, σ2 = 2, K1 = 4, K2 = 5; note that additional solutions may
appear outside of the positive quadrant.

Given the simple form of the output function h(x) = (r1, r2), any basin of
attraction of u̇ = k(u) − I will correspond in X (under h−1) to a rather rigid
set, namely that of every (p1, p2, r1, r2) such that (r1, r2) is in the basin. It is
clear that the basins of attraction of (6) don’t have this form — this limits
the analogy between (6) and its reduced system.

On the other hand, the same procedure can be applied for cones that are
not necessarily the positive orthant: for instance if, in the above example,
each protein promoted its own growth and inhibited each other’s growth, then
Kn = R+ × R− × R+ × R− would make (6) strongly monotone.

Fig. 3. The vector field γ(u) = k(u) − I, using parameter values σ1 = 4, σ2 = 2,
K1 = 4, K2 = 5.

7 Cascades and Strong Monotonicity

In the paper [2], it is shown that a monotone controlled system which is weakly
transparent and strongly excitable, or strongly transparent and weakly ex-
citable, has a closed loop which is strongly monotone (definitions below). This
is used as a convenient sufficient condition for the corresponding hypothe-
sis of the main result, here Theorem 1. One drawback of the setup of that
paper is that it is not robust under cascading, in the sense that a cascade
of weakly transparent and excitable systems is not necessarily weakly trans-
parent nor weakly excitable. In what follows, we strenghten these definitions
so as to address this point. One possible application is the introduction of
“pseudo-delays” in the system by adding a cascade of systems of the form
τ żi = vi − zi, vi+1 = zi, i = 1, 2, . . .. Note that this cascade respects both the
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monotonicity and the characteristic of the original system. The introduction
of true delays in the loop also does not affect our conclusions; this can be
shown by appealing to Corollary 5.5.2 in Smith [15], which asserts that the
stability properties of equilibria in a strongly monotone delay system do not
change when the delays are ignored. See [7] for further discussion.

We say that a system of the form (1) is sign definite if for each i 6= j, it holds
that ∂fi

∂xj
(x, u) ./ 0 for all (x, u) ∈ X × U , where the relation ./ stands for

either “<”, “>”, or “=”, and of course different signs are allowed for different
pairs (i, j). Similarly for partial derivatives ∂fi

∂uj
(x, u) for all i, j, and for partial

derivatives of h. One can then define a signed digraph by using the input and
the state variables as nodes, as usual. It can be shown that a sign definite
autonomous system is monotone with respect to some orthant cone iff every
undirected cycle in its digraph has an even number of “−”’s, and that in that
case, it is strongly monotone if the digraph is strongly connected. See [2].

In what follows, we say that a monotone system (1) is partially excitable if for
any x1 ≤ x2, arbitrary inputs u1, u2, and any t0 > 0, the following properties
hold: 1) u1 < u2 a.e. on (0, t0) implies x(t, x1, u1) < x(t, x2, u2), t ∈ (0, t0),
and 2) u1 � u2 a.e. on (0, t0) implies x(t, x1, u1) � x(t, x2, u2), t ∈ (0, t0).
We also say that (1) is strongly excitable if u1 < u2 a.e. on (0, t0) implies
x(t, x1, u1) � x(t, x2, u2), t ∈ (0, t0). Further, we will say that (1) is partially
transparent if for arbitrary inputs u1 ≤ u2 and initial conditions x1, x2 one
has 1) x1 < x2 implies h(x(t, x1, u1)) < h(x(t, x2, u2)), and 2) x1 � x2 implies
h(x(t, x1, u1)) � h(x(t, x2, u2)). It is strongly transparent if x1 < x2 implies
h(x(t, x1, u1)) � h(x(t, x2, u2)), for all t > 0 for which the solutions x(t, xi, ui)
are defined. Note that the first condition for partial excitability and the second
condition for partial transparency correspond to the notions of weak excitabil-
ity and weak transparency, respectively, in the terminology of [2] (borrowed
from [11]).

In particular partial excitability (transparency) implies weak excitability (trans-
parency). But the converse is not true: in the cooperative case, if there are
arcs from a fixed input to every single state, but no arcs from other inputs
whatsoever, then the system is weakly excitable but not partially excitable
since u1 < u2 doesn’t imply x(t, ξ, u1) < x(t, ξ, u2). Similarly for transparency.
The valid implication allows us nevertheless to quote Theorem 2 from [2] in
our present terminology:

Proposition 1 A monotone system (1) that is partially excitable and partially
transparent has strongly monotone feedback loop provided that it is also either
strongly excitable or strongly transparent.

It has also been shown in [2] that in the case of orthant cones and sign def-
inite systems, there are simple conditions on the digraph of the system that
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imply transparency and excitability statements. For instance, if there exists a
directed path from every input variable (from every state variable) to every
state variable (to every output variable), then the system is strongly excitable
(strongly transparent). We show a similar result for the definitions above,
which complements Theorems 4 and 5 of [2].

Lemma 4 Let (1) be a sign definite controlled system that is monotone under
some orthant cone. If from every input (from every state) there exists a path
towards some state (towards some output), and if towards every state (towards
every output) there exists a path from some input (from some state), then the
system is partially excitable (partially transparent).

Proof. These results follow from an adaptation of the proofs of Theorems 4
and 5 in Appendix A of [2]. Consider first partial excitability: by Case 2 of
Lemma A1 of [2], since every input variable uj reaches some xi through a
directed path, u1 < u2 a.e. on (0, t0) implies that x(t, ξ, u1) < x(t, ξ, u2) for
any ξ, t ∈ (0, t0). By monotonicity, x(t, x1, u1) ≤ x(t, x2, u1) < x(t, x2, u2).
As to the second assertion, the proof given for Theorem 4 in [2] actually
shows that if every xi is reachable from some uj, then for any ξ: u1 � u2 ⇒
x(t, ξ, u1) � x(t, ξ, u2). The statement for x1 ≤ x2 follows by monotonicity.
A similar argument is valid for transparency: given an input u and assuming
ξ1 < ξ2, there is i such that {t ≥ 0 | xi(t, ξ1, u) < xi(t, ξ2, u)} ∩ [0, ε) has
nonzero measure for every ε > 0, see sketch of proof of Theorem 5 in [2]. If yi

is reachable from xi, then hj(x(t, ξ1, u)) < hj(x(t, ξ2, u)), t > 0. The statement
for u1 ≤ u2 follows by monotonicity, and from the fact that every xi reaches
some yj. By the same token, since every yj is reached by some xi, x1 � x2

implies hj(x(t, x1, u1)) � hj(x(t, x2, u2)), t > 0.

Now consider, instead of system (1), a cascade of the form

ẋi = fi(x
i, ui), ui+1 = hi(x

i), i = 1 . . .N (8)

We will refer to the subsystem ẋi = fi(x
i, ui), ui+1 = hi(x

i), as (8.i).

Lemma 5 Suppose that the cascade system (8) is monotone, and that each
subsystem (8.i) is both partially excitable and partially transparent. Then (8)
is partially excitable and partially transparent. Further, if (8.1) is strongly
excitable, then (8) is strongly excitable. If (8.N) is strongly transparent, then
(8) is strongly transparent.

Proof. Consider any pair of initial conditions x1 =(xi
1)i <x2 =(xi

2)i of the closed
loop system, and let xi

1(t), x
i
2(t), i = 1 . . . N be the corresponding induced

inputs, u2
j(t) = h1(x

1
j(t)), . . . , u

N
j (t) = hN−1(xN−1

j (t)), u1
j(t) = uN+1

j (t) =
hN(xN

j (t)), j = 1, 2, the corresponding outputs on a maximally defined in-
terval (from now on we will restrict ourselves to this interval). In particular,
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note that xi
j(t) is the solution of the open system ẋi = f(xi, ui

j) with initial
condition xi

j and input ui
j(·), j = 1, 2, i = 1 . . .N . The monotonicity of (8) is

clear since it is the closed loop of a cascade of monotone systems, under posi-
tive feedback. By monotonicity we thus have xi

1(t) ≤ xi
2(t), and consequently

ui
1(t) ≤ ui

2(t), for every t ≥ 0.

We prove the partial excitability of the cascade: if u1
1 < u1

2 on some interval
(0, t0), then x1

2 < x1
2 on that interval by partial excitability of (8.1). But this

in particular implies that x1(t) 6= x2(t) on this interval, hence x1(t) < x2(t).
If, on the other hand, u1

1 � u1
2 on (0, t0), then x1

2 � x1
2 on that interval by

partial excitability of (8.1), u2
1 � u2

2 by partial transparency of (8.1), and so
on, so that by induction xi

1(t) � xi
2(t) for all i by partial excitability of (8.i)

for every i, and so x1 � x2. The proof for partial transparency is very similar.

Now suppose that (8.i) is strongly excitable, and let u1
1 < u1

2. By strong
excitability we have x1

1 � x1
2, and by partial transparency and excitability

x2
1(t) � x2

2(t). Continuing as before, we have x1(t) � x2(t). The last assertion
is proven in a similar way.

Corollary 1 Let the system (8) be monotone and let each (8.i) be partially
excitable and partially transparent. Let one of these two conditions be also
strong, for some (8.i). Then the closed loop system obtained by setting u1 =
uN+1 in (8) is strongly monotone.

Proof. By the previous lemma, the cascade (8) is itself partially excitable
and partially transparent. If (8.1) is strongly excitable or if (8.N) is strongly
transparent, the conclusion follows by the previous lemma and the previous
proposition. If (8.i) is strongly excitable for i > 1, change the order of the
cascade by eliminating (8.1) . . . (8.i − 1) and appending them after (8.N)
in the natural way, Note that the closed loop system remains the same, and
apply the previous argument. A similar proof applies to the second statement
of the Corollary.
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