
On the asymptotic behavior of a cyclic biochemical system with delay

German A. Enciso∗

Abstract—The study of the effects of feedback in bio-
chemical circuits is central to the understanding of complex
molecular processes such as signal transduction. In this
paper, a simple cyclic system with delay is considered, whose
nonlinearities are assumed to have a form common in the
theory of mass action kinetics. Two possible consequences
of this assumption are then discussed, namely either the
global convergence to equilibrium, or the existence of periodic
solutions for large delay. The work on monotone controlled
systems by Sontag and Angeli is central to this discussion,
as is the application of Schwarzian derivatives to Michaelis-
Menten and Hill nonlinearities.

As a relatively simple example of a biochemical
dynamical system with feedback, the following cyclic
system with delay is considered in this paper:

ẋi = gi(xi+1) − µixi, i = 1 . . . n − 1,
ẋn = gn(x1(t − τ)) − µnxn,

(1)

for n ≥ 1. Assume that each function gi is either
increasing or decreasing and that the system is subject
to negative feedback. More formally, let

µi > 0, δig
′
i(x) ≥ 0, δi ∈ {1,−1}, i = 1 . . . n,

n∏
i=1

δi = −1.

(2)
This system can be considered a generalization of

classical models, by Goldbeter [10] and Goodwin [11],
of autoregulated biochemical networks under negative
feedback. Delay systems with this general structure can
also be found in the modeling of neural networks, for
instance in [19], [28], using gi(x) = αi tanh(βix) as
nonlinearities. It should also be noted that different
delays can be introduced in the nonlinear terms of each
equation without loss of generality, since all but one of
them can be removed with a simple change of variables.

An important special case in biochemical models is
that in which those functions gi(x) which are not linear
have the Hill function form

f(x) =
axm

b + xm
+c, or f(x) =

a

b + xm
+c, a, b > 0, c ≥ 0,

(3)
m = 1, 2, . . .. A recent (though undelayed) model within
this framework is that of the so-called repressilator, see
Elowitz and Leibler [6]. We will give special attention
below to this type of nonlinearity.
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The dynamics of the bounded solutions of system
(1) under assumptions (2) is governed by a Poincaré-
Bendixson result, proved by Mallet-Paret and Sell in
1996 [23]. Informally speaking, for every initial condi-
tion the solution of the system approaches either an
equilibrium, a periodic orbit, or a homoclinic chain of
orbits. In particular, any chaotic behavior is ruled out.
In the positive feedback case δ1 · . . .·δn = 1, system (1) is
monotone and also falls within the framework of Mallet-
Paret and Sell. A large number of results are known in
that case, the most important one perhaps being that
the generic solution is convergent towards an equilibrium
[15], [26].

The work of Sontag and Angeli [3] can be used to
establish a relationship between the system (1) and the
one-dimensional discrete system

uk+1 = g(uk), (4)

where

g(u) :=
1
µ1

g1 ◦ 1
µ2

g2 ◦ . . . ◦ 1
µn

gn. (5)

Namely, if the discrete system (4) is globally attractive
towards its unique equilibrium x0, then the original
system (1) is globally attractive towards its unique
equilibrium, for all values of the delay τ ; see also [8],
[7], [9], [2], [27], and Hale and Ivanov [13].

A second branch of study for systems analogous to
(1) is the search for nonconstant periodic oscillations.
This usually involves a different kind of assumption,
namely that the system (1) is ‘ejective’ around its unique
equilibrium for large enough delay. Such arguments
usually require the hypothesis |g′(x0)| > 1, which in
particular rules out the global attractiveness of (4).
See Nussbaum [22], Hadeler and Tomiuk [12], Hale and
Ivanov [13], and Ivanov and Lani-Wayda [17], among
others.

In the present paper, both approaches are unified
to give a more complete picture of the relationship
between system (1) (under assumptions (2)) and system
(4). A Hopf bifurcation approach is used to prove that
|g′(x0)| > 1 implies the existence of periodic solutions of
(1) for certain values of τ . Also, an important class of
nonlinearities gi is shown to be such that the following
conditions are a dichotomy:

1) The system (4) is globally attractive towards x0.
2) |g′(x0)| > 1.
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Fig. 1. Typical solutions of a) system (1) and b) system (4), where
n = 3, g1 = g2 = g3 = tan−1(x), µ1 = 0.11, µ2 = 2.5, µ3 = 4, and
τ = 80. c) The induced decreasing function g(x) and the increasing
function g2(x) = g(g(x)) (see Lemma 3). Here |g′(x0)| = 1/1.1 < 1.
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Fig. 2. The same system is considered as in Figure 1, except that
the value of µ1 has been changed to 0.09. The typical solutions of
a) system (1) and b) system (4) now appear to be limit oscillations
and periodic 2-cycles. c) In this case |g′(x0)| = 1/0.9 > 1 and
g2(x) = x has several solutions.

The main result of this paper is the following theorem,
which combines the results from [3], [7] with a Hopf
bifurcation approach on the parameter τ .

Theorem 1: Consider system (1) under assumptions
(2). Suppose that every nonlinear function gi(x) is of
Hill function form (3), m ≥ 1. Then exactly one of the
following holds:

1) |g′(x0)| ≤ 1, system (4) is globally attractive to a
unique equilibrium, and system (1) is also globally
attractive to a unique equilibrium, for all values of
the delay τ .

2) |g′(x0)| > 1, the discrete system (4) has noncon-
stant periodic solutions, and the continuous system
(1) has nonconstant periodic solutions for some
values of τ .

The same result holds if, instead of assuming a Hill
function form, every nonlinear function gi(x) is assumed
to be of one of the forms ±a tan−1(bx), ±a tanh(bx),
which are used in neural networks applications. A key
ingredient is the use of the so-called Schwarzian deriva-
tive, see Section I and [24].

The Hopf bifurcation which is present in the second
case of Theorem 1 is not shown to be supercritical,
although this seems to be the case as suggested by
numerical simulations. In fact, simulations suggest that
oscillations in system (1) for the case 2. are present for
all sufficiently large τ .

It is important to note that this information is not
provided a priori by the Poincaré-Bendixson theorem
itself, which doesn’t give conditions for the different
possible outcomes. Even knowing that the equilibrium of
(1) is unstable doesn’t guarantee the existence of periodic

oscillations, since for instance homoclinic orbits need to
be ruled out (possibly using Morse decomposition theory
[21]).

System (4) is one-dimensional and doesn’t contain
delays, which makes it much more tractable than (1).
The use of the Schwarzian derivative to simplify the
behavior of a model is common in the discrete systems
literature; see for instance [20] for an application to
continuous systems. A Hopf bifurcation approach has
also been proposed in the Poincaré-Bendixson context
in [30].

The direct contributions of the present paper are i)
to show that for an important class of nonlinearities the
two alternative cases of this model form a dichotomy; ii)
to formally establish a relationship between the discrete
and the continuous system, which has already been
conjectured by Smith [25] in the undelayed case; iii) to
carry out a direct Hopf bifurcation analysis of the linear
system associated to (1) (which is new to my knowledge),
and iv) to illustrate the usefulness of the Schwarzian
derivative in the context of Hill functions.

In Section I the concept of the Schwarzian derivative
is briefly introduced and applied to Hill functions. In
Section II, the discrete system and its relationship with
(1) are described. In Section III the Hopf bifurcation
argument is developed. Finally, in Section IV, the rela-
tionship with the general results in [3] and [8] is shortly
discussed, and a conjecture is described from numerical
simulations.

I. Sg and Hill Functions
An important concept related to the stability of

discrete dynamical systems is the so-called Schwarzian
derivative Sf of a real function f , defined by

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

The properties of Sf that will be useful here are
summarized in the following lemma; see [24], Section 2B
for proofs and details. Intuitively, the condition Sf < 0
restricts the form of the function f so that the dynamics
of uk+1 = f(uk) is more easily determined.

Lemma 1: Let f, g be C3 real functions on a real
interval. Then the following hold:

1) If Sf < 0, then f ′ cannot have positive local
minima or negative local maxima.

2) S(f ◦ g)(x) = Sf(g(x))g′(x)2 + Sg(x).
3) Sf < 0, Sg < 0 imply S(f ◦ g) < 0.
It is now shown that the class of functions with

negative Schwarzian derivative includes the Hill functions
with m > 1, and that S(x/(b + x)) = 0.

Lemma 2: Let a, b > 0, c ≥ 0, and m = 1, 2, . . ., and
define

f(x) =
axm

b + xm
+ c, g(x) =

a

b + xm
+ c.

Then Sf(x) = Sg(x) = −m2 − 1
2

1
x2

.
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Proof: Noting that the Schwarzian derivative doesn’t
change after multiplication by or addition of a constant,
we can assume that a = 1, c = 0. Using the quotient
rule we compute

f ′(x) =
mxm−1

b + xm
− mx2m−1

(b + xm)2
=

m

x
(y− y2) =

m

x
y(1− y),

where y = f(x). Similarly we compute

f ′′(x) = −m

x2
y(y − 1)(2my − (m − 1))

f ′′′(x) =
m

x3
y(1 − y)[6m2y2 + (6m − 6m2)y

+(m − 1)(m − 2)].

We calculate the Schwarzian derivative

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

=
1
x2

[6m2y2 − 6m(m − 1)y + (m − 1)(m − 2)]

−3
2

1
x2

[4m2y2 − 4m(m − 1)y + (m − 1)2]

=
1
x2

[(m − 1)(m − 2) − 3
2
(m − 1)2] = −m2 − 1

2
1
x2

.

To compute Sg(x), it is easy to see that g = b−1f ◦κ,
where κ(x) = b1/m/x. A simple computation shows that
Sκ = S(1/x) = 0, x �= 0. Therefore

Sg(x) = S(f ◦ κ) = Sf(κ(x))κ′(x)2 + Sκ(x)

= −m2 − 1
2

x2 1
x4

+ 0 = −m2 − 1
2

1
x2

.

II. The Discrete System
Consider a continuous, bounded, decreasing function

g : I → I , where I = R or I = [a,∞), a ∈ R. It
can be easily seen that there is a unique fixed point
x0 of g. The study of the discrete system (4) becomes
straightforward by relating its dynamics to that of the
system uk+1 = g2(uk), since the function g2(x) = g(g(x))
is bounded and increasing. We state the following lemma
for convenience; see also Angeli and de Leenheer [1] for
an extended discussion.

Lemma 3: System (4) is globally attractive if and only
if the equation g(g(x)) = x has the unique solution x0.

Proof: All solutions of the system uk+1 = g(g(uk))
are monotonic increasing or decreasing, and each con-
verges towards some fixed point by boundedness and
continuity. Furthermore, this system is globally attrac-
tive to x0 if and only if (4) is globally attractive to x0.
The conclusion follows immediately.

Let I = R or I = [a,∞) and let g : I → I be
differentiable, bounded and decreasing. We say that
system (4) is fixed point determined if

|g′(x0)| ≤ 1 ⇔ system (4) is globally attractive towards x0.

Thus, the global attractiveness of (4) is determined by
the slope of g(x) at its unique fixed point. For instance,
it was shown in [9] that the functions g(x) = A/(K +x),
x ≥ 0, form fixed point determined systems for every

A, K > 0, since for such functions system (4) is globally
attractive and |g′(x0)| < 1; see also Corollary 1.

An example of a (discontinuous) function which is not
fixed point determined is

g(x) =

⎧⎨
⎩

1, x < −0.5,
0, −0.5 ≤ x ≤ 0.5,
−1, x > 0.5.

(6)

This function has the unique fixed point x0 = 0
and g′(0) = 0, but there is the obvious stable cycle
g(1) = −1, g(−1) = 1. To obtain a proper example
of a differentiable function which is not fixed point
determined, it is sufficient to smoothen g(x) above with
an appropriate convolution operator.

The reader will have noticed the importance of g
being fixed point determined from the discussion leading
to the statement of Theorem 1. Nevertheless g is only
defined in terms of the functions gi, and the composition
of fixed point determined functions is not necessarily
fixed point determined (nor is the composition of merely
sigmoidal functions necessarily sigmoidal). This is why
the Schwarzian derivative becomes useful at this point.

Lemma 4: Let g : I → I be C3, decreasing and
bounded, and such that Sg < 0. Then g is fixed point
determined.

Proof: Consider the increasing function G = g2 =
g ◦ g, and note that G′(x0) = g′(x0)2. If |g′(x0)| > 1,
hence G′(x0) > 1, then by boundedness it follows that
G(z) = z for some z > x0. Therefore (4) has a nontrivial
cycle of period 2, since g(z) �= z.

Conversely, let G′(x0) ≤ 1, and assume that G(z) =
z for some z �= x0. Without loss of generality we can
assume that G(y) = y, G(z) = z, for some y, z such
that y < x0 < z. We show that there exists y1 such that
y < y1 < x0 and G′(y1) > 1: otherwise one would have

x0 = G(x0) = G(y) +
∫ x0

y

G′(x) dx ≤ y + (x0 − y) = x0,

and in particular G′(x) = 1 on [y, x0]. But this would
imply SG = 0 on that interval, a contradiction. Similarly
there exists z1 such that x0 < z1 < z and G′(z1) > 1.
Now consider the function G′(x) on the interval [y1, z1].
Since G′(x0) ≤ 1, this function has a minimum w1 on
the interior of this interval, and that therefore G′′(w1) =
0, G′′′(w1) ≥ 0. Thus SG(w1) ≥ 0, a contradiction.

Corollary 1: Let I = R or I = [a,∞), and let g : I → I
be decreasing and bounded. If g(x) is the composition of
functions each of which either i) has negative Schwarzian
derivative, or ii) is of Hill function form for m ≥ 1, then
g is fixed point determined.

Proof: If g is the composition of functions all of
which have negative Schwarzian derivative, then this
must be true of g as well, and g is fixed point determined
by Lemma 4. The same holds if some of the gi are of
Hill function form with n > 1, by Lemma 2. If some but
not all of these functions are of Hill function form for
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m = 1 (or Michaelis-Menten form), then still Sg(x) < 0
by the derivation formula in Lemma 1.

Finally, if all the functions are of the form (α+βx)/(γ+
δx), α, β, γ, δ ≥ 0, then g and g2 are also of this form.
It is then easy to show that the (bounded, increasing)
function g2(x) is concave down on I , and that it has a
unique fixed point x0 which further satisfies g′(x0)2 =
(g2)′(x0) ≤ 1. The result follows from Lemma 3.

The relationship between the nonlinear system (1)
and the discrete system (4) becomes clear in the proof
sketch of the following well-studied result. See Angeli
and Sontag [2] and Enciso, Smith, and Sontag [7] for an
abstract formal treatment, as well as Sontag [27] for a
discussion of the embedding argument. The use of the
lemma by Dancer in this context is new.

Proposition 1: Consider a system (1) under assump-
tion (2), and let g(x) be defined by (5). If (4) is globally
attractive towards x0, then (1) is globally attractive
towards a unique equilibrium.

Sketch of Proof: An elegant result of Dancer [5] shows
that in an abstract monotone system with bounded
solutions and a unique equilibrium, all solutions must
converge towards this equilibrium (the result is stated
for discrete systems in [5], but a variation for continuous
systems is straightforward). Consider the extended 2n-
dimensional system

ẋi = gi(xi+1) − µixi, i = 1 . . . n − 1,
ẋn = gn(z1(t − τ)) − µnxn,
żi = gi(zi+1) − µizi, i = 1 . . . n − 1,
żn = gn(x1(t − τ)) − µnzn.

(7)

It is not difficult to see that a trajectory
(x1(t) . . . xn(t)) is a solution of (1) if and only if
(x1(t) . . . xn(t), x1(t) . . . xn(t)) is a solution of (7).
Moreover, this system is now subject to positive
feedback, since δ1 · . . . δn · δ1 · . . . · δn = 1. Thus this
system is monotone with respect to a certain partial
order; see [26], Chapter 5, and [4]. Finally, the equilibria
of this system are in bijective correspondence with the
solutions of g(g(x)) = x. The conclusion follows from
the result by Dancer and Lemma 3.

III. Hopf Bifurcation

In this section we consider the linearization

ẋi = kixi+1 − µixi, i = 1 . . . n − 1,
ẋn = knx1(t − τ) − µnxn,

(8)

of system (1) around its unique equilibrium point
(x1, . . . xn). It is easy to see that

ki = g′i(xi+1), i = 1 . . . n − 1,
kn = g′n(x1).

(9)

We will show in the negative feedback case k1 . . . kn <
0 that for |k1 · . . . · kn| > µ1 · . . . · µn, a Hopf bifurcation

exists on the parameter τ . The characteristic polynomial
associated to the linear system (8) is

g(z, τ) := (z + µ1)(z + µ2) · . . . · (z + µn) + Ke−τz, (10)

where K := −k1 · . . . · kn > 0. See Lemma 3 of Hofbauer
and So [16].

Lemma 5: Let g(λ, τ0) = 0 for λ = σ + ωi, τ0 > 0,
and assume that σ ≥ 0. Then there exists an open
neighborhood U of τ0, and a differentiable function
ρ : U → C, such that g(ρ(τ), τ) = 0 on U . If σ = 0,
then Re ρ′(τ0) > 0.

Proof: Define f(z) :=
∏

i(z + µi). The proof of the
first statement follows by the implicit function theorem
for the function g(z, τ) at the point (λ, τ0), after verifying
that ∂1g(λ, τ0) �= 0:

∂g
∂z (λ, τ0) = f(λ)

∑
j

1
λ+µj

− τ0Ke−λτ0

= −Ke−λτ0Q(λ, τ0),

where

Q(λ, τ0) :=
∑

j

1
λ + µj

+ τ0.

Using the fact that µj ≥ 0 for every j, it is easy to see
that Re Q(λ, τ0) > 0 and the proof is complete.

To prove the second statement, let σ = 0. Note that
necessarily ω �= 0, since g(z, τ) > 0 whenever z ≥ 0.
Assume ω > 0, the other case being similar. Multiplying
on both numerator and denominator by λ−µj , it follows
that

Im Q(λ, τ0) = −ω
∑

j

1
ω2 + µ2

j

< 0.

By the implicit function theorem,

ρ′(τ0) = −∂2g(λ, τ0)(∂1g(λ, τ0))−1 = −ωiQ(λ, τ0)−1.

It follows that Re ρ′(τ0) > 0 as stated.
Theorem 2: If K > µ1 · . . . · µn and (1) is not

exponentially unstable for τ = 0, then system (1) has
a Hopf bifurcation with respect to the parameter τ .

Proof:
We show that there exists τ0 ≥ 0 such that

i) g(ωi, τ0) = 0 for some ω > 0,
ii) g(λ, τ0) �= 0, for all λ ∈ C with Re λ > 0,
iii) for some ω0 > 0, it holds that both
g(ω0i, τ0) = 0 and g(mω0i, τ0) �= 0 for all integer
m �= 1,−1.

Together with Lemma 5, this will directly imply the
existence of a Hopf bifurcation at the point τ = τ0; see
Theorem 11.1.1 of Hale [14].

We start with the case in which g(ωi, 0) = 0 for some
ω ∈ R. Then necessarily ω �= 0 by definition of g, and
without loss of generality ω > 0. Thus i) and ii) are
satisfied for τ0 = 0, by hypothesis. To see iii), simply
recall that g(ωi, τ0) = 0 implies |ωi| < M , and pick
ω0 > 0 so that ω0i is a root with maximal norm.

We can therefore assume that g(λ, 0) = 0 implies
Re λ < 0. Let
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S := {τ ≥ 0 | g(λ, τ) = 0 for some λ ∈ C s.t. Re λ ≥ 0}.
so that in particular 0 �∈ S. To see that S is nonempty,
first note that whenever ω > 0 and |f(ωi)| = K, one
can find τ > 0 such that e−ωiτ = −f(ωi)/K and so
g(ωi, τ) = 0. Noting that |f(0)| = µ1 · . . . · µn < K and
|f(ωi)| → ∞ as ω → ∞, it follows by the intermediate
value theorem that |f(ωi)| = K for some ω; therefore
S �= ∅.

Let τ0 := inf S; it is shown now that τ0 ∈ S. Let σ1 >
σ2 > . . . → τ0, and let λ1, λ2, . . . be such that Re λi ≥ 0
and g(λi, σi) = 0 for every i. Let M > 0 be such that
|f(z)| > 2K for |z| ≥ M . Then

∣∣e−λiτ
∣∣ < 1, and therefore

necessarily |λi| < M , for every i. There exists thus a
subsequence of {λi} which converges towards λ0 ∈ C,
Re λ0 ≥ 0. By continuity g(λ0, τ0) = 0, and τ0 ∈ S. In
particular τ0 > 0.

To complete the proof of i) and ii), it suffices to show
that g(λ, τ0) = 0, Re λ ≥ 0 imply Re λ = 0. But this
follows directly from Lemma 5, by the minimality of
τ0 > 0.

The proof of iii) follows now in the same way as above.

Note that this result is proved in the context of Theo-
rem 11.1.1 of [14]. The existence of periodic solutions for
certain values τ > τ0 follows, but no assertion is made
regarding their stability. This may nevertheless be shown
using the above proof, if the asymptotic stability of the
equilibrium of (1) is established for τ = τ0.

In the particular case τ = 0, it is known [29]
that system (8) is asymptotically stable provided that
K/(µ1 · . . . ·µn) < secn(π/n) = 1/(cosn(π/n)). Therefore
necessarily τ0 > 0 in those cases.

The following proposition establishes a global stability
result for the linear system (8). Let τ0 be as in the proof
of Theorem 2.

Proposition 2: Let K > µ1 · . . . · µn and assume that
(1) is not exponentially unstable for τ = 0. Then the
linear system (8) is exponentially unstable if and only if
τ > τ0.

Proof: Recall from Theorem 2 that 0 < τ0 = inf S, so
that for τ < τ0, g(·, τ) can have no root λ with Re λ ≥
0. Similarly, g(·, τ0) can have no root λ with Re λ >
0, by Lemma 5. Therefore for τ ≤ τ0, the exponential
instability of (8) is ruled out.

Let S′ ⊆ (τ0,∞) be the set of τ ≥ 0 such that
system (8) is exponentially unstable. It follows from
g(iω, τ0) = 0, Re ρ′(τ0) > 0 (Theorem 2, Lemma 5)
that (τ0, τ0 + ε) ⊆ S′ for some ε > 0. Assume by
contradiction that S′ �= (τ0,∞), and let τ1 be the
infimum of (τ0,∞) − S′. In particular, it holds that
τ1 ≥ τ0 + ε > τ0. It holds nevertheless that τ1 ∈ S
(see the proof of Theorem 2), therefore g(iω1, τ1) = 0
for some ω1 ≥ 0. Applying Lemma 5 to construct
a corresponding function ρ1 on a neighborhood of τ1

such that Re ρ′1(τ1) > 0, a contradiction follows from
(τ0, τ1) ⊆ S′.

The following lemma, which addresses the undelayed
system in the unstable case, will be used in the proof of
the main result.

Lemma 6: Under the assumptions of Theorem 1, as-
sume that (1) is exponentially unstable for τ = 0. Then
there exist nonconstant periodic solutions of (1), τ = 0.

Proof: The undelayed cyclic system (1) has been
considered extensively in the literature. To prove this
result we apply Theorem 4.1 b) of Mallet-Paret and
Smith [18]. In order satisfy its hypotheses, we note that
any root of g(∗, 0) with positive real part cannot be real,
therefore at least two roots with positive real part are
present. Second, we note that x̄1 > 0, . . . x̄n > 0 under
the present hypotheses, and that therefore Uk0 �= ∅ in
that result.

A similar argument can be given for gi(x) =
±a tan−1(bx), gi(x) = ±a tanh(bx) using a suitable
change of variables so that (R+)n is invariant for (1).

A. Proof of Theorem 1

Now the proof of the main result can be completed,
as well as the remark which follows it.

Proof: It is a standard result that the functions
a tan−1(bx), a tanh(bx), a ∈ R, b > 0, have negative
Schwarzian derivative at every point, see [24].

Let x0 be the unique fixed point of g(x). The first
case corresponds to the situation in which |g′(x0)| ≤
1. Since (4) is fixed point determined by Corollary 1
and Lemma 4, it holds that (4) is globally attractive to
equilibrium. By Proposition 1, system (1) is also globally
attractive towards a unique equilibrium.

Assuming now |g′(x0)| > 1, system (4) must have
a periodic solution since it is fixed point determined.
Evaluating g′(x) using the chain rule yields that K >
µ1 · . . . · µn. If (1) is exponentially unstable around its
equilibrium for τ = 0, there exist periodic solutions of
(1) for τ = 0, by Lemma 6. Otherwise, one can use
Theorem 2 to conclude that a Hopf bifurcation occurs
with respect to the parameter τ .

IV. Future Work

The framework of Angeli and Sontag [3] and Enciso,
Smith and Sontag [7] describes quite general dynamical
systems as the negative feedback loop of controlled
monotone systems. Sufficient conditions are then given
for the system to be globally attractive to equilibrium,
even in the presence of delays or diffusion terms. Theo-
rem 1 can potentially be used to extend these results to
the case of periodic oscillations, as well as to show that
the original results are sharp in some sense. It is not
the first time that this is suggested. For instance, Angeli
and Sontag [2] have pointed out that if the associated
discrete system has a 2-cycle, then large enough delays
would create the appearance of oscillatory behavior (or
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pseudooscillations), which in a biological system might
be as meaningful as proper periodic oscillations.

The analysis of the asymptotic behavior of the system
considered in this paper is far from complete. If the
system falls into the second case of the main theorem,
simulations suggest that for τ > τ0 the system is in
fact globally attractive towards a unique nonconstant
periodic solution. Work towards such a result would most
likely include the use of the Poincaré-Bendixson result,
for example by finding a Morse decomposition of the
system and ruling out the existence of homoclinic orbits.

Finally, note that the need for the assumption Sg < 0
can be traced back to the particular approach used
to prove the existence of periodic oscillations (Hopf
bifurcation), in the following sense: if one could prove
the existence of periodic oscillations of (1) based solely
on the existence of a stable periodic 2-cycle of (4), then
the proof of the main theorem wouldn’t have to require
that g is fixed point determined, and the assumption
Sg < 0 could be dropped. Indeed, it has been observed
in numerical simulations that whenever there is a stable
2-cycle of (4), then there is also a limit cycle of (1) for
large enough τ — even when Sg �< 0. This has been
numerically observed to be also true in more complex
noncyclic systems in the framework of [7]. Note that
the proof of the existence of periodic solutions would
require to abandon any obvious use of Hopf bifurcation
or ejective fixed point methods, since it could not be
required that |g′(x0)| > 1.
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