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Abstract—A recent paper by Angeli and Sontag presented
a stability criterium for feedback loops involving single
input, single output models which admit a well-defined I/O
characteristic and satisfy a monotonicity condition. This
paper extends the result to systems with multiple inputs
and outputs and delays, and introduces a continuous-time
reduction of such systems that preserves some of their
stability properties.
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I. Introduction
This paper is a follow-up to the article [2]. That

work presented a reduction principle for feedback loops
involving single input, single output models which
admit a well-defined I/O characteristic and satisfy
a monotonicity condition, and here we extend the
result to the multivariable case. We also consider the
introduction of delays, as well as the preservation of the
result under cascading and pseudodelays.

The setup is as follows. Consider subsets X ⊆ Rn

and U ⊆ Rm, and a system

ẋ = f(x, u), y = h(x) (1)

with input-value and output-value space U , and state
space X . We are interested in the global stability
properties (location and stability of equilibria) of the
closed loop system

ẋ = f(x, h(x)) (2)

which arises under unity feedback.
The main assumptions are that the open-loop sys-

tem (1) is monotone with respect to cones Km, Kn, and
Km in the input-value, state, and output-value spaces,
and it admits a nondegenerate I/S characteristic kX :
U → X (definitions of monotonicity and characteristics
are reviewed below). We denote the corresponding I/O
characteristic as k = h ◦ kX : U → U . In our main
result we will establish a connection between (1) and
the reduced system:

u̇ = k(u) − u (3)

as follows:
Theorem 1: Let (1) be a monotone system that

admits a nondegenerate I/S characteristic kX and an
I/O characteristic k with nondegenerate fixed points,
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and assume that the closed loop system (2) is strongly
monotone. Then the function ū→ kX(ū) forms a bijec-
tive correspondence between the locally asymptotically
stable points of the monotone system (3) and those
of (2). Furthermore, almost all bounded solutions of (2)
converge to one of these asymptotically stable points.

This reduction allows one to study the global stability
properties of the full system (1) in terms of the reduced
system, which has, in general, much lower dimensional-
ity than (1).

In [2], a result was proved that is equivalent to this
one for the special case of scalar inputs and outputs
(m = 1). This scalar result was formulated in terms
of a discrete-time condition involving derivatives of k.
One of the main contributions of the present paper
is the re-interpretation of that condition in terms of
the reduced-order continuous-time system (3). This re-
interpretation is crucial to the generalization that we
gave in Theorem 1.

The above theorem is of use in a number of applica-
tions by writing autonomous systems as the closed loop
of suitable controlled systems, especially in biological
networks with multiple steady states and/or presenting
hystheresis effects. The reader is referred to [1], [2], [3]
for the proof of the result in the special case of scalar
inputs and outputs.

One of the most interesting implications of this
methodology lies in the fact that the mapping k
can be often obtained from experimental data, even
when knowledge of the system (1) is poor because
of uncertainty in the form of reactions, or unknown
or unmeasurable parameters. Provided that general
qualitative knowledge about the system is available
(insuring the appropriate assumptions for the system to
apply), one can then mathematically conclude stability
from this input/output data. This is discussed in detail
in the paper [3].

The organization of this paper is as follows. After sta-
ting some basic definitions, we first establish a number
of preliminary results about positive matrices, followed
by the local version of the result (linear systems).
In Section IV we prove the theorem, and follow in
Section V with an example. Section VI is concerned
with cascading and strong monotonicity, as well as the
introduction of pseudodelays. We conclude in Section
VII with a generalization to systems with true delays.
For many proofs we refer the reader to [6].
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II. Definitions
Let K ⊆ Rn be a cone, by which we mean a set

that is nonempty, convex, closed under multiplication
by positive scalars, and pointed (i.e. K ∩ (−K) = {0}).
We will also assume that K is closed and has nonempty
interior (it is “proper”). The cone K induces the partial
order given by: x ≤ y iff y − x ∈ K, and the stronger
order x� y iff y− x ∈ intK. We also say that x < y if
x ≤ y and x 6= y.

Assume given a system (1), where the state space
X ⊆ Rn is the closure of an open set, the input- and
output-value set U is also the closure of an open set, and
f and h are continuously differentiable. We also assume
given two proper cones Kn ⊂ Rn and Km ⊆ Rm. By an
input we mean a measurable essentially bounded map
u : R+ → U and write “u ≤ v” for two inputs provided
that u(t) ≤ v(t) for almost all t. (We abuse notation
and use letters such as u to denote both an input value
–element of U– or an input, depending on the context.)

The system (1) is monotone with respect to Kn,Km

if h is a monotone function, that is x ≤ y implies h(x) ≤
h(y), and the flow preserves the order, i.e., the following
property is satisfied:

For any two inputs u, v such that u ≤ v, and
any two initial conditions x1, x2 ∈ X such that
x1 ≤ x2, it holds that x(t, x1, u) ≤ x(t, x2, v)
for all t ≥ 0.

Here, x(t, x0, u) is the solution of the system (1)
with initial condition x0, evaluated at time t, and the
relations ≤ are defined as in the previous section for
each cone, and interpreted as ≤U or ≤X in the obvious
manner. Systems with no inputs can be seen as a
particular case (using an input value space consisting of
just one point); such a system is monotone if x1 ≤ x2

implies x(t, x1) ≤ x(t, x2) for all t. We will always
understand “for all t” to mean for all times t belonging
to the common domain of definition of the solutions
involved.

A system of the form (1) is said to be strongly
monotone if u ≤ v, x1 < x2 implies x(t, x1, u) �
x(t, x2, v) ∀t. We also assume in this case that x � y
implies h(x) � h(y) (we say that h itself is strongly
monotone).

A. Characteristics
We say that (1) has a well-defined input to state

characteristic kX : U → X if for every constant
input u(t) ≡ u ∈ U , x(t, x0, u) converges to kX(u)
for every initial condition x0 ∈ X . In that case we
refer to k = h ◦ kX as the system’s input to output
characteristic. We will also assume throughout in this
text that the characteristic kX is nondegenerate, that
is, det fx(kX(u), u) 6= 0 for every u ∈ U .

We say that k has nondegenerate fixed points if
det (k′(ū) − I) 6= 0 (i.e., k′(u) has no eigenvalues equal

to one) for each ū fixed point of k (not to confuse with
the previous definition).

Suppose given a system (1) which is both monotone
and admits an I/O characteristic k. Then k is a
monotone function. This is proved as follows. Pick any
two elements u ≤ v in U , and consider the corresponding
constant inputs u(t) ≡ u and v(t) ≡ v as well as an
arbitrary initial state x0. By monotonicity, x(t, x0, u) ≤
x(t, x0, v). Letting t tend to infinity, we conclude that
k(u) ≤ k(v).

It can be shown that system (3) has unique, maxi-
mally defined solutions under the given circumstances.
The reader is referred to [6] for details.

III. Linear Systems

Consider a linear system ẋ = Ax+Bu, y = Cx that
is monotone and admits well defined (and necessarily
nondegenerate) I/S and I/O characteristics. We close
the system by unity feedback, letting u = y = Cx,
thus forming an autonomous dynamical system ẋ =
(A+BC)x. It is easy to compute the I/O characteristic
from the equation Ax + Bu = 0 for a fixed u ∈ U ,
namely k(u) = −CA−1Bu . Thus k′(0) = −CA−1B;
this will be important for the statement of the following
theorem, which is equivalent to Lemma 6.6 in [2], and
whose proof can be found in [6].

Theorem 2: Let ẋ = Ax + Bu, y = Cx, with A ∈
Rn×n, B ∈ Rn×m, C ∈ Rm×n, be a linear system that
admits an I/O characteristic k and is monotone with
respect to cones Kn and Km in the input-value and
state spaces. Assume that

det
(
I + CA−1B

)
6= 0 .

Then A+BC is Hurwitz iff −
(
I + CA−1B

)
is Hurwitz.

In other words, the closed loop system is exponentially
stable iff the linear system u̇ = k(u)−u is exponentially
stable.

Recall that if a linear system is asymptotically stable,
then all of its eigenvalues must have negative real part,
and the system is therefore exponentially stable. A
similar property holds for monotone systems, which we
explicitly state below (see [6] for a proof).

Lemma 1: Let ẋ = F (x) be a monotone system under
some proper cone, F (x̄) = 0, and det ∂F

∂x (x̄) 6= 0. Then x̄
is asymptotically stable if and only if it is exponentially
stable.

IV. Proof of Theorem 1

Now we are ready to prove the main result. In the case
that m = 1, the condition that ū be a stable equilibrium
of the reduced system (3) is equivalent to asking that
k(ū) = ū and k′(ū) − 1 < 0, since by nondegeneracy
k′(ū)− 1 6= 0. This is just the condition k′(ū) < 1 used
in [2].



3

Proof: Given an equilibrium point ū of (3), that is
k(ū) = ū, let the linearization of the open system around
ū and kX(ū) be denoted as ẋ = Ax+Bu, y = Cx. The
hypotheses of Lemma 1 are satisfied both for ū in the
reduced system and for x̄ = kX(ū) in the closed loop
system, by nondegeneracy of fixed points in the former,
and since detA + BC 6= 0 in the latter. We therefore
have by Theorem 2 and Lemma 1:

ū is asymptotically stable in the reduced system
iff ū is exponentially stable in the reduced system
iff x̄ is exponentially stable in the closed loop system
iff x̄ is asymptotically stable in the closed loop system

This shows that there is a direct correspondence
between those asymptotically stable points of the closed
loop system and those of the reduced system.

The important generic convergence result proven by
Hirsch in the late 1980’s can be stated in our framework
as follows: given an autonomous system that is strongly
monotone with respect to some proper cone, almost
every initial condition with bounded solution has a limit
set contained in the set of equilibria; see Theorem 7.8 in
[8]. In the case that the set of equilibria is discrete, as
it is here, we can conclude that almost every bounded
solution converges to an equilibrium point.

Let λ ∈ R be the Perron-Frobenius eigenvalue associ-
ated with A+BC after linearizing around an unstable
equilibrium point x̄. By unstability and since we know
λ 6= 0, we have λ > 0; thus x̄ is a hyperbolically unstable
equilibrium of the closed loop system, and it follows
(see [2] and de la Llave et al. [9]) that the set of initial
conditions that converge toward x̄ in the closed loop
system has measure zero.

Thus almost all bounded solutions converge to one of
the equilibria corresponding to a locally exponentially
stable steady state of the reduced system, as stated.

Note that under the present hypotheses merely as-
ymptotic stability is actually ruled out: an equilibrium
point is either exponentially stable, or unstable with
some eigenvalue with positive real part.

This theorem provides a way to describe the behavior
of a complex monotone system in terms of a potentially
much simpler, associated system. For m = 2 a graphical
analysis as in [2], [3] is also possible, by plotting the
vector field k(u)− u on the input space, and observing
which equilibria appear to be stable (see example
below).

In the case that (3) is itself strongly monotone and
has bounded solutions, one can actually apply Hirsch’s
theorem to it and deduce that almost all trajectories
converge toward one of the stable steady states. The
question arises as to whether the analogy between the
two systems could be carried further: if the output
function h were surjective, does it hold that x(t, x0)
converges to x̄ if and only if u(t, h(x0)) converges to
h(x̄)? In other words, do the basins of attraction of

each stable point correspond to each other, as the stable
points do? Unfortunately this is not true, as the example
below will illustrate.

V. An Example

We illustrate the main result with an example of
a coupled biological circuit. An important class of
proteins, referred to as transcription factors, regulate
transcription of messenger RNA by promoting (or
inhibiting) the binding of the enzyme RNA polymerase
to the DNA sequence. An autoregulatory transcription
factor regulates the production of its own messenger
RNA. Transcription factors are very common, and often
more than one is necessary for RNA polymerase to
initiate transcription. For a mathematical analysis of
the simple autoregulatory circuit, see Smith [14]1.

Let p1, p2 be two autoregulatory transcription factors,
and r1, r2 their corresponding messenger RNAs. We will
couple the circuits by assuming that the proteins are
also needed to regulate each other’s transcription. The
dynamics of the circuit is thus expressed as follows:

ṗi = airi − bipi

ṙi = gi(p1, p2) − ciri
i = 1, 2. (4)

We assume that both g1(p1, p2) and g2(p1, p2) are
increasing functions of both p1 and p2, as well as positive
and bounded. The interconnections are illustrated in
Figure 1. In particular, note that all the solutions of
this system are bounded.

p

p1

r1

r2

2

Fig. 1. Interconnections for system 4. The dotted lines indicate
where the interconnections will be cut and replaced by inputs.

We analyse the dynamics of this system by cutting
the arcs as indicated in the figure, and we arrive to the
following controlled system with two inputs:

ṗi = aiui − bipi

ṙi = gi(p1, p2) − ciri
i = 1, 2. (5)

which is monotone under the usual positive orthant
cone. If we fix the input (u1, u2), the system converges

1The standard model in p. 58 of [14] is in fact another interesting
application of Theorem 1: by cutting the arc xn → x1 as explained
in our example, the results in Section 4.2, [14], follow by looking
at the fixed points of k(u) = α−1

1 . . . α−1
n g(u). Furthermore, the

local stability of each equilibrium is determined by the slope of
k(u) at each corresponding fixed point.
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toward the point

pi =
ai

bi
ui, ri =

1
ci
gi

(
a1

b1
u1,

a2

b2
u2

)

which constitutes the value of kX at the point (u1, u2).
Note that the arcs cut in Figure 1 are chosen so as to
leave the digraph with no directed loops in order for the
characteristic to be well defined, while minimizing the
number of inputs. Also, two cuts are the minimum since
there are two disjoint, directed loops in the digraph.
Since we want the closed loop to be (4), we need
h(p1, p2, r1, r2) = (r1, r2), which when composed with
kX yields

k(u, v) =
(

1
c1
g1

(
a1

b1
u1,

a2

b2
u2

)
,

1
c2
g2

(
a1

b1
u1,

a2

b2
u2

))
.

Under mass action kinetics assumptions, a quasi-steady
state analysis (see [11]) yields for the gi the general
form

gi = σ̂i
pmi
1 pni

2

K̂i + pmi
1 pni

2

.

The coefficients mi, ni describe the cooperativity with
which the proteins bind to the DNA sequence. For
instance, if two p1 proteins bind to each other (forming
a dimer) before acting on the DNA sequence of pi,
then mi = 2. It is a reasonable assumption that the
cooperativity of a protein is the same for both DNA
sequences, that is m1 = m2 = m,n1 = n2 = n. We set
for simplicity m = 2, n = 1. The remaining coefficients
K̂i, σ̂i are determined by the way the proteins bind to
the particular DNA sequence and how they aid the
polymerase enzyme. We have

k(u1, u2) =
(
σ1

u2
1u2

K1 + u2
1u2

, σ2
u2

1u2

K2 + u2
1u2

)
,

where σi = σ̂ic
−1
i , Ki = K̂ia

−2
1 b−2

1 a−1
2 b−1

2 . Apart from
the trivial solution (0, 0), the equation k(u1, u2) =
(u1, u2) can be rewritten as

K1 + u2
1u2 = σ1u1u2, K2u2 + u2

1u
2
2 = σ2u

2
1u2 (6)

We solve for u1 in the first equation of (6) and replace
in the second equation, obtaining

K1u
2
1 = (σ2u

2
1 −K2)(σ1 − u1)u1 . (7)

From Figure 2 we see that there might be only one
nonnegative solution of (6) (i.e., the trivial solution u1 =
0), or there may be three nonnegative solutions, in the
case that K1,K2 are comparatively small. Theorem 1
can be used here to establish a correspondence between
these points and the equilibrium points of (4), which
sends stable states (of the system u̇ = k(u) − I) to
stable states of (4). Thus, by verifying that there are
two stable points and one unstable point in u̇ = k(u)−I ,
we will have shown that the same holds for (4). See
Figure 3 for an illustration of this in the particular case

−
√

K2
σ2

√
K2
σ2

σ1 u1

(σ2u2
1−K2)(σ1−u1)u1

K1u2
1

Fig. 2. The solutions of the system of equations (7)

σ1 = 4, σ2 = 2,K1 = 4,K2 = 5; note that additional
solutions may appear outside of the positive quadrant.

Given the simple form of the output function h(x) =
(r1, r2), any basin of attraction of u̇ = k(u) − I will
correspond in X (under h−1) to a rather rigid set,
namely that of every (p1, p2, r1, r2) such that (r1, r2)
is in the basin. It is clear that the basins of attraction
of (4) don’t have this form — this limits the analogy
between (4) and its reduced system.

On the other hand, the same procedure can be applied
for cones that are not necessarily the positive orthant:
for instance if, in the above example, each protein
promoted its own growth and inhibited each other’s
growth, then Kn = R+ × R− × R+ × R− would make
(4) strongly monotone.

Fig. 3. The vector field γ(u) = k(u)− I, using parameter values
σ1 = 4, σ2 = 2, K1 = 4, K2 = 5.

VI. Cascades and Systems with Pseudodelays
In this section we will extend Theorem 1 to cascades

of monotone systems with characteristic. One possible
application is the introduction of pseudodelays, as we
will briefly discuss below.
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We say that a monotone system (1) is partially
excitable if for any x1 ≤ x2, arbitrary inputs
u1, u2, and any t0 > 0, the following properties
hold: 1) u1 < u2 a.e. on (0, t0) implies x(t, x1, u1) <
x(t, x2, u2), t ∈ (0, t0), and 2) u1 � u2 a.e. on (0, t0)
implies x(t, x1, u1) � x(t, x2, u2), t ∈ (0, t0). We
also say that (1) is strongly excitable if u1 <
u2 a.e. on (0, t0) implies x(t, x1, u1) � x(t, x2, u2), t ∈
(0, t0). Further, we will say that (1) is partially transpar-
ent if for arbitrary inputs u1 ≤ u2 and initial conditions
x1, x2 one has 1) x1 < x2 implies h(x(t, x1, u1)) <
h(x(t, x2, u2)), and 2) x1 � x2 implies h(x(t, x1, u1)) �
h(x(t, x2, u2)). It is strongly transparent if x1 < x2

implies h(x(t, x1, u1)) � h(x(t, x2, u2)), for all t > 0
for which the solutions x(t, xi, ui) are defined. Note
that the first condition for partial excitability and the
second condition for partial transparency correspond to
the notions of weak excitability and weak transparency,
respectively, in the terminology of [2] (borrowed from
[10]). These definitions are further discussed in [6],
where for instance infinitesimal characterizations are
provided in the orthant case.

Now consider, instead of system (1), a cascade of the
form

ẋi = fi(xi, ui), ui+1 = hi(xi), i = 1 . . .N (8)

We will refer to the subsystem ẋi = fi(xi, ui), ui+1 =
hi(xi), as (8.i).

The usefulness of the concepts of partial trans-
parency and excitability is illustrated in the following
proposition, proved at length in [6]. The corresponding
assertion with ‘weak’ instead of ‘partial’ transparency
and excitability would not hold.

Proposition 1: Let the system (8) be such that each
(8.i) is monotone, partially excitable and partially
transparent. Let one of these two conditions be also
strong, for some (8.i), and suppose that UN+1 ⊆ U1.
Then the closed loop system obtained by setting u1 =
uN+1 in (8) is strongly monotone.

Theorem 3: Let every subsystem (8.i) of (8) be
monotone and have a nondegenerate characteristic
ki, i = 1 . . .N . Let UN+1 ⊆ U1, and let every (8.i) be
partially transparent and partially excitable, with one
of these conditions being strong, for some (8.i). Also
assume that k = hNkn . . . h1k1 has nondegenerate fixed
points. Then the function u → (k1(u), k2h1k1(u), . . .)
forms a correspondence between the stable points of
(3) and those of (8). Also, almost all solutions of (8)
converge towards one of these points.

Note that in particular, if ki = id, i = 2, . . .N , and
h1 = id, i = 1 . . .N , then k = k1 and the stable points
of (8) correspond with those of ẋ1 = f1(x1, u1).

Proof: By the previous Proposition, we see that the
closed loop system is strongly monotone. We linearize
the controlled system (8) around a fixed input value u1

and a fixed state x = (x1, . . . , xN ), and the resulting

linear system has the form ẋ = Ax + Bu, where A
is a lower triangular matrix. Thus the determinant of
A is the product of the determinants of its diagonal
elements, that is det f1x1 · . . . ·det f1xN , which is nonzero
by nondegeneracy of each subsystem. The caracteristic
of the cascade as a whole can be shown to exist, by the
Converging Input, Converging State property, see [1]
and work to appear by the authors. It has the form
(k1(u), k2h1k1(u), . . .), and thus the input to output
characteristic is k = hNkn . . . h1k1. Thus we can apply
Theorem 1, and the conclusions follow.

An example of this result can be seen by defining (8)
with τ

N − 1 ẋ
i = −xi+xi−1, i = 2, . . .N , and hi = id for

all i. This will have the effect of roughly delaying the
output by τ units; the previous Theorem guarantees
that the stability properties of this new system are
unchanged, compared with the system without the
“pseudodelay”.

VII. Systems with (True) Delays

For a final motivation for the use of monotone systems
and the application of the main theorem, we quote
a stability result from Smith [14] for systems with
true delays (as opposed to the pseudodelays from the
previous section). A similar application for reaction
diffusion systems is valid and given in Section 7.6 of
[14].

Given a fixed r ≥ 0 (delay length), any function
x : [−r,∞) → Rn, and any t ≥ 0, we denote by xt

the function xt(s) = x(t + s), s ∈ [−r, 0]. A general
autonomous delay system can then be written as

ẋ(t) = F (xt), x0 = φ (9)

where φ : [−r, 0] → Rn, and F is an Rn-valued function
defined on an apropiate domain of such functions.
System (9) is said to be monotone with respect to a
given cone K ⊆ Rn if for any σ ∈ K∗, φ ≤ ψ pointwise,
and σ(φ(0) = σ(ψ(0)), it holds that σ(F (ψ)−F (φ)) ≥ 0.
This definition becomes condition (Q) (Smith [14], p.78)
in the cooperative case, and it generalizes, for delay
systems, a related concept used by H. Schneider and M.
Vidyasagar (see [17]). It can be shown to be equivalent
to the monotonicity of (9) as a dynamical system in
the state space of functions φ, with respect to the cone
of states φ that are pointwise nonnegative, using an
argument very similar to that in Theorem 5.1.1 of Smith
[14] for the nontrivial direction.

One can associate to (9) the finite dimensional system
ẋ = g(x), g(x) = F (x̂) where x̂ is the function with
constant value x. It is easy to see that an equilibrium
φ of system (9) must be a constant function v̂ – but
its stability may in general well differ from that of v
in ẋ = g(x). The next lemma is a rephrasing of [14],
Corollary 5.5.2, and will allow us to extend the main
result to include certain delays. Also, we will say that
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an autonomous delay system has uniformly bounded
solutions if for every compact set A ⊆ Rn there exists
a bounded B ⊆ Rn that contains all solutions of the
system with initial conditions contained in A.

Lemma 2: If (9) is cooperative, then v ∈ Rn is an
exponentially stable (unstable) equilibrium of ẋ = g(x)
if and only if v̂ is an exponentially stable (unstable)
equilibrium of (9).

The following Theorem is the conclusion of this
section.

Theorem 4: Let the cone Kn be the positive orthant,
and r ≥ 0. Suppose that the assumptions of Theorem 1
hold. Consider the system

ẋ(t) = f(x(t), h(x(t − r))) (10)

viewed as a delay system (9) with F (φ) =
f(φ(0), h(φ(−r))), and suppose that (9) has uniformly
bounded solutions. Then the function ū → k̂X(ū)
forms a bijective correspondence between the locally
exponentially stable points of the monotone system
u̇ = k(u) − u and those of (10). Furthermore, almost
all bounded solutions of (10) converge to one of these
exponentially stable points.

Proof: We show first that the autonomous delay
system (10) is monotone. Let σ ∈ K∗, φ ≤ ψ, and
σ(φ(0) = σ(ψ(0)). Using the notation in Section 2 of
[6], let ‘x’= φ(0), ‘h’= ψ(0)−φ(0), ‘u’= h(φ(−r)), ‘v’=
h(ψ(−r) − h(φ(−r)). By hypothesis it holds that h ≥
0, v ≥ 0 and σ(h) = 0. Thus by monotonicity of system
(1), it holds that φ(f(x + h, u + v) − f(x, u)) ≥ 0, or
σ(F (ψ) − F (φ)) ≥ 0, and the conclusion follows.

Consider ū ∈ Rm. By monotonicity and Lemma 1,
ū is exponentially stable in u̇ = k(u) − u iff it is
asymptotically stable in this system. By Theorem 1,
this holds iff kX(u) is asymptotically stable in (2),
iff it is exponentially stable, again by monotonicity
and Lemma 1. But this holds iff the constant function
k̂X(u) is an exponentially stable equilibrium of (10), by
Lemma 2 and monotonicity.

To show the convergence of almost all bounded solu-
tions of (10) to one of these equilibria, we use Hirsch’s
theorem and verify that this system is eventually
strongly monotone. Smith ([14], pp. 85-91) provides as
sufficient criteria for strong monotonicity the conditions
called there (K),(I),(R),(T). (K) and (R) are easy to
show, the former by monotonicity; (T) holds for this
function since f is assumed to be continuous, and using
the uniform boundedness of the system. Finally, (I)
holds since it is equivalent to the irreducibility of the
undelayed closed loop (2), which holds by hypothesis.
Now, any equilibrium of the undelayed closed loop must
be either exponentially stable or exponentially unstable,
since λ 6= 0 for any of its equilibria (see the proof of
Theorem 2). By Lemma 2, the same holds for (9). The
last statement follows from the last section of [8].

Example: We consider the same model as before, with
a delay introduced to simulate the time necessary for
translation and folding of the proteins:

ṗi = airi(t− r) − bipi

ṙi = gi(p1, p2) − ciri
i = 1, 2. (11)

The previous theorem then guarantees that the analysis
we carried out in the previous section applies equally for
this system, to find which equilibria are locally stable.
Note that nevertheless the basins of attraction of the
two systems don’t necessarily correspond to each other.

Finally, we remark that for a general monotone
controlled delay system ẋ = f(xt, α), x0 = φ, yt(s) =
h(xt(s)) (see [1]), we can also characterize the locally
stable equilibria of its closed loop as follows: if we
assume that the associated, undelayed system ẋ =
f(x̂, û), y = h(x̂) satisfies the hypotheses of Theorem 1,
then u → k̂X(u) forms a correspondence between the
locally exponentially stable equilibria of the delayed
closed loop system, and those of u̇ = k(u) − u. The
proof is exactly like that of the corresponding statement
in Theorem 4. This result allows for delays to be
introduced in places other than the output, as well as
multiple different delays or integral delays.
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