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Abstract. A standard result by Smale states that n dimensional strongly

cooperative dynamical systems can have arbitrary dynamics when restricted
to unordered invariant hyperspaces. In this paper this result is extended to

the case when all solutions of the strongly cooperative system are bounded

and converge towards one of only two equilibria outside of the hyperplane.
An application is given in the context of strongly cooperative systems of

reaction diffusion equations. It is shown that such a system can have a contin-

uum of spatially inhomogeneous steady states, even when all solutions of the
underlying reaction system converge to one of only three equilibria.

1. Introduction

Let f : Rn → Rn be a C1 vector field. A dynamical system

(1)
dui
dt

= fi(u), i = 1 . . . n,

is said to be strongly cooperative if the following comparison principle is satisfied:
whenever u(t), v(t) are two different solutions such that ui(0) ≤ vi(0), i = 1, . . . , n,
then it must hold ui(t) < vi(t) for every t > 0, i = 1, . . . , n. Strongly cooperative
systems are canonical examples of so-called strongly monotone systems, which have
been studied extensively by M. Hirsch, H. Smith, and others, and more recently
by Sontag and collaborators [1, 5, 7, 12]. They have applications in engineering
problems, as well as in the study of ecological models and gene regulatory networks.

Some of the most important results about abstract strongly monotone systems
guarantee a certain behavior for the generic solution of the system. For instance,
the well known theorem by Hirsch [6, 12] states that the generic bounded solution
converges towards the set of equilibria E (i.e. that the set of initial conditions,
whose solution is bounded and doesn’t converge towards E, has measure zero).
Such statements are careful to exclude a small set S of exceptional states, about
which nothing is said.

A simple but powerful argument originally due to Smale [11] shows the reason for
this tendency. Smale showed that any arbitrary compactly supported dynamical
system in Rn−1 can be seen as the restriction of a certain strongly cooperative
system in Rn to an (n − 1)-dimensional hyperplane. That is, the dynamics of
strongly cooperative systems on invariant hyperplanes can a priori be completely
arbitrary.
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Now, Smale’s argument is originally carried out for so-called competitive sys-
tems, and the corresponding statement for strongly cooperative systems requires
considering the system in the negative time direction (see for instance Hirsch and
Smith [7], Section 3.5). But the hyperplane in question is globally exponentially
attractive in the original example. In particular, the time-inverted system has un-
bounded solutions everywhere outside of this hyperplane. This can be unsatisfying
in some applications, for instance in the context of the Hirsch generic convergence
theorem which requires for its usefulness the boundedness of solutions.

The main result of this paper is a theorem in the spirit of the Smale theorem,
adapted so that the strongly cooperative embedding has bounded solutions, and
so that every solution outside of the invariant hyperplane remains bounded and
converges towards one of only two equilibria in Rn. Define the function S(u) :=
u1 + . . .+ un and the hyperplane H := S−1(0).

Theorem 1. Consider a C2 function g : H → H, and a compact region R ⊆ H.
Then there exists a C2 function f : Rn → Rn, such that

(1) for every u ∈ Rn and every i 6= j: ∂fi/∂uj(u) > 0;
(2) for every u ∈ R: g(u) = f(u);
(3) There exists P > 0 such that every solution u(t) of (1) with S(u(0)) > 0

(S(u(t)) < 0) converges towards (P, . . . , P ) (towards (−P, . . .− P )) as t→
∞;

(4) if it holds that g(u) ◦u < 0 on H −R, then f has no zeros other than those
of g and ±(P, . . . , P ).

Item 1. is a well known sufficient condition for the strong cooperativity of sys-
tem (1). An important step in the proof of this theorem is the construction of a
‘template’ strongly cooperative system with bounded solutions

(2)
du
dt

= M(u),

which has a continuum of equilibria along a bounded subset of H. This system
is then suitably altered so that it equals any given function g : H → H on the
bounded subset of H.

Application: Strongly Cooperative Reaction Diffusion Systems. As an
application, consider a system of reaction diffusion equations

(3)
∂ui
∂t

= di∆ui + fi(u), i = 1 . . . n,

defined on a bounded domain Ω ⊆ R under Neumann boundary conditions, where
di > 0 and fi : Rn → R is a C2 function, i = 1 . . . n. A general question for these
systems is their relationship with the corresponding finite dimensional system (1).
Note that while every equilibrium of (1) corresponds to an equilibrium of (3), there
may nevertheless be equilibria of (3) which are nonhomogeneous in space, and which
therefore don’t naturally correspond to an equilibrium of (1). For instance, if n = 1
and f(u) = u(u + 1)(1 − u) = u − u3, then (3) takes the form of the so-called
Fisher-Kolmogorov equation. For this system (1) has exactly three equilibria, but
it is well known that (3) may have additional solutions.

As in the finite dimensional case, the condition ∂fi/∂uj > 0, i 6= j, implies a
comparison principle for the solutions of (3) ([12], Chapter 7). This comparison
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principle is an important tool for the analysis of reaction diffusion systems in a
variety of cases; see for instance the book by Cantrell and Cosner [2], where the
cooperativity is used in the analysis of various spatial ecological models.

The application of Theorem 1 addresses the existence of uncountably many non-
homogeneous equilibria in these strongly cooperative reaction diffusion systems
with bounded solutions.

Theorem 2. There exists a reaction diffusion system (3) under Neumann boundary
conditions such that

(1) for every u ∈ Rn and every i 6= j: ∂fi/∂uj(u) > 0;
(2) every solution of (1) converges towards one of only three equilibria; but
(3) the set of nonhomogeneous equilibria of (3) has the cardinality of the con-

tinuum.

The construction is carried out in the case Ω = (−π/2, π/2) with n = 3. First
a non-cooperative system is constructed on a two dimensional reaction diffusion
system, in which a continuum of equilibria is shown to exist (Section 3). Then this
system is embedded in a three dimensional cooperative system using Theorem 1.

This result is interesting because reaction diffusion equations (3) for scalar x and
u may have only finitely many nonhomogeneous solutions, as is the case for the
Fisher-Kolmogorov equation above. Note also the work on realization of ODEs in
reaction diffusion equations, which among many other results implies the existence
of a continuum of equilibria for (3) in the Dirichlet case for Ω ⊆ Rm, m > 1 [10].

Regarding item 3. from Theorem 2, in a paper by Kishimoto and Weinberger [9]
it is proved that for convex Ω and given a system (3) such that ∂fi/∂uj > 0 for i 6= j,
any nonhomogeneous equilibrium must be linearly unstable. Moreover, in a recent
result by Smith, Hirsch, and the author, it is shown that under the same hypotheses
the generic bounded solution of (3) converges towards a homogeneous equilibrium
[4]. In particular, the set of nonhomogeneous equilibria must also be sparse (in the
sense of prevalence; see [8, 3]). This indicates that item 3. in Theorem 2 cannot be
strenghened to a substantially larger set of nonhomogeneous equilibria.

Refer to [12], Chapter 7, regarding the existence and uniqueness of solutions
of system (3). We use C(Ω,Rn) as the state space for the underlying dynamical
system.

2. Strongly Cooperative Embedding

In this section we construct the Smale embedding described in the introduction.
Our first result provides the template strongly cooperative system used in the proof
of Theorem 1.

Proposition 1. There exists ε > 0 and a smooth function M : Rn → Rn such that
(1) for every u ∈ Rn and every i 6= j: ∂Mi

∂uj
(u) > 0,

(2) for every u ∈ H, |u| ≤ ε: M(u) = 0, and
(3) for every solution u(t) of (2) such that S(u(0)) > 0 (S(u(t)) < 0), it holds

u(t)→ (1, . . . , 1) (u(t)→ (−1, . . .− 1)) as t→∞.

Proof. Consider a smooth function θ : Rn → [0, 1] such that i) θ(u) = 0 on the
closed set {u ∈ Rn |u ∈ H, |u| ≤ 1/2}; ii) θ(u) = 1 on the closed set Rn − {u ∈
Rn |S(u) < 1/2, |u| < 1}; iii) 0 < θ(u) < 1 for all other u ∈ Rn.
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Define γ : R → R to be a smooth function with the following properties: i) for
|x| ≤ 1, let γ(x) := Jx, where the constant J > 0 will be specified below; ii) the
zeros of γ are exactly 0, nP,−nP for some P > 0; iii) γ′(x) ≥ −1/(2n), x ∈ R. It
follows from ii) that γ(x) < 0 for x > nP , γ(x) > 0 for x < −nP .

Define the smooth function M : Rn → Rn:

(4) Mi(u) := θ(u)
(
S(n)
n
− ui

)
+ γ(S(u)), i = 1, . . . , n.

We first show the strong monotonicity of the system (2). Fix i = 1 . . . n, and let
j 6= i. For |u| ≤ 2, |S(u)| ≤ 1:

∂Mi

∂uj
(u) =

∂

∂uj

[
θ(u)

(
S(u)
n
− ui

)]
+ 1 · γ′(S(u)).

But γ′(S(u)) = J , by assumption i) in the construction of γ. Since the contin-
uous function ∂

∂uj
[θ(u)(S(u)

n − ui)] has a minimum on the compact set {v | |v| ≤
2, |S(v)| ≤ 1}, we can choose J > 0 to be large enough that ∂Mi

∂uj
(u) > 0 on this

set; similarly for all other choices of i, j.
If |u| > 2 or S(u) > 1, then θ(v) ≡ 1 on a neighborhood of u, and it holds for

i 6= j:

∂Mi

∂uj
(u) =

1
n

+ γ′(S(u)) ≥ 1
n
− 1

2n
> 0,

by assumption iii) in the construction of γ.
In order to further understand this monotone system, write M(u) = a(u) + b(u),

where

ai(x) := θ(u)
(
S(u)
n
− ui

)
, bi(u) := γ(S(u)), i = 1, . . . , n.

We calculate the dot product of these vectors:

a(u) ◦ b(u) = θ(u)γ(S(u))
n∑
i=1

1
n
S(u)− ui = 0.

For instance, in order to determine the zeros of M(u), it holds in particular
that M(u) = 0 if and only if a(u) = b(u) = 0. We have a(u) = 0 if and only if
either θ(u) = 0, or nui = S(u) for every i. Thus the set of zeros of a is (B1/2 ∩
H) ∪ {(α, . . . , α) |α ∈ R}. Also, b(u) = 0 holds exactly on the set {v |S(v) =
nP ,0, or −nP}. The second claim in the proposition follows from rescaling M by
a factor of 1/P .

Let u(t) be a solution of (2), and define v(t) := S(u(t))/n. It follows by the
chain rule that

(5)

nv′(t) =
n∑
i=1

u′i(t) = nγ(S(u(t))) + θ(u)
n∑
i=1

1
n
S(u)− ui = nγ(S(u(t))) = nγ(nv(t)).

Thus v′(t) = γ(nv(t)). In particular, H is an unstable invariant subset for the
system (2). Moreover, v(t) remains bounded and converges towards 0, P or −P
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as t → ∞, depending on whether S(u(0)) = 0, S(u(0)) > 0, or S(u(0)) < 0
respectively.

Let now wi(t) := ui(t)− S(u(t))/n = ui(t)− v(t), i = 1 . . . n (so that w(t) is the
projection of u(t) onto H). Then it holds

(6) w′i(t) = u′i(t)− v′(t) = θ(u(t))(
1
n
S(u(t))− ui(t)) = −θ(u(t))wi(t)

Hence the function w(t) remains bounded for t→∞, and thus u(t) = v(t)+w(t)
is also a bounded function as t→∞.

To prove the third claim, consider a solution u(t) of (2) such that S(u(0)) > 0.
Define v(t) and w(t) as above. It holds S(u(t)) > 1/2 for all large enough t (since
S(u(t)) = nv(t) → nP > 1/2 as t → ∞). But this implies that θ(u(t)) = 1 for
large t, by the definition of θ. Hence w′(t) = −w(t) for all large t by (6), and
w(t)→ 0 as t→∞. Since ui(t) = wi(t) + v(t) for every i, it follows ui(t)→ P (or
ui(t) → 1 for the rescaled system), whenever S(u(0)) > 0, i = 1, . . . , n. Similarly
for S(u(0)) < 0. �

Remark 1. Let θ(u) ≡ 1 and γ(x) := δ tan−1(x(x + 1)(1 − x)) in equation (4),
where δ > 0 is small enough that γ′(x) ≥ −1/(2n) on R. Then one obtains a
simplified system which satisfies all conditions of the above result, except that the
disc of equilibria in H collapses to the single equilibrium 0.

Remark 2. A different approach to construct the vector field M : Rn → Rn is the
following. Let Mi(u) := tan−1( 4

πnS(u) + σ(ui))− ui, i = 1 . . . n, where σ : R → R
is a smooth function such that σ(x) = tan(x) whenever |x| < ε < π

4 , and σ(x) = 0
whenever |x| > π

4 . A direct calculation shows that ∂Mi/∂uj > 0 for every i 6= j.
Also, if |ui| < ε for every i and S(u) = 0, then Mi(u) = tan−1(σ(ui)) − ui = 0.
Therefore this function satisfies at least items 1. and 2. in Proposition 1. Moreover,
note that if u = (π4 , . . . ,

π
4 ), then Mi(u) = tan−1( 4

πn
πn
4 ) − π

4 = 0. Similarly for
u = −(π4 , . . . ,

π
4 ).

Proof of Theorem 1.

Proof. We continue to use the definition of the functions θ, γ,M from the proof
of Proposition 1. For notational convenience, assume w.l.o.g. that g,R have been
rescaled so that M(u) ≡ 0 on R (after the construction, the embedding f can be
rescaled back along with g and R).

Let G : Rn → H be the C2 function defined by G(u) := g(u− S(u)/n). Thus in
particular G ≡ g on H.

Define the C2 function f : Rn → Rn by the equation

fi(u) := QMi(u) + (1− θ(u))Gi(u), i = 1, . . . , n,

for a constant Q > 0 which will be defined shortly. The fact that f = g on R is
clear since M = 0, θ(u) = 0, and g = G on this set.

To see that the system

(7)
du
dt

= f(x)

is strongly monotone, we calculate the derivative

∂fi
∂uj

(u) = Q
∂Mi

∂uj
(u) +

∂

∂uj
[(1− θ(u))Gi(u)]
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for fixed j 6= i. Outside of the compact support of 1− θ, this derivative is positive
by Theorem 1 i). On the support of 1 − θ, both ∂Mi

∂uj
and ∂

∂uj
[(1 − θ(u))Gi(u)]

are continuous functions which attain their minimum and maximum values on this
compact set. By Theorem 1 i), the minimum value of ∂Mi

∂uj
is positive. Thus for a

large enough value of Q > 0, ∂fi

∂uj
(u) > 0 on Rn. Similarly for all other choices of

i, j, i 6= j.
Let u(t) be a solution of (7), and let v(t) := S(u(t))/n as in Theorem 1. Then

nv′(t) = Q

n∑
i=1

Mi(u(t)) + (1− θ(u(t)))
n∑
i=1

Gi(u(t)) = Q

n∑
i=1

Mi(u(t))

= Qnγ(S(u(t))) = Qnγ(nv(t)),

using the fact that S(G(u)) = 0 on Rn and (4). Thus it follows that v′(t) =
Qγ(nv(t)), as in (5). In particular once more, if S(u(0)) > 0, then S(u(t))/n→ P
as t → ∞. Since f = QM whenever S(u) > 1/2, it follows u(t) → (P, . . . , P ) by
Theorem 1, iii). Similarly for S(u(0)) < 0.

In order to address the fourth statement, we show first that M(u) ◦ u ≤ 0,
for all u ∈ H. To see this, note that for u ∈ H it holds S(u) = 0 and thus
Mi(u) = −θ(u)ui, i = 1, . . . , n. Thus M(u) ◦ u = −θ(u)u ◦ u = −θ(u) |u|2 ≤ 0.

The fact that f has no zeros outside H other than ±(P, . . . , P ) follows from the
argument above. Suppose that u◦g(u) < 0 on H−R, and consider u ∈ H, f(u) = 0.
If M(u) = 0, then θ(u) = 0 by definition of θ and necessarily G(u) = g(u) = 0. If
M(u) 6= 0, then also θ(u) < 1, else 0 = f(u) = M(u) 6= 0. In that case also u 6∈ R
by construction of M , hence u ◦ g(u) < 0. Therefore

f(u) ◦ u = (QM(u) + (1− θ(u))g(u)) ◦ u ≤ (1− θ(u))g(u) ◦ u < 0,

a contradiction. �

3. Continuum of Equilibria

In this section we construct a (non-cooperative) two dimensional reaction diffu-
sion equation with a continuum of spatially nonhomogeneous equilibria, and whose
corresponding reaction system (1) is globally attractive towards a single equilibrium.
We begin in reverse by defining the functions which will constitute the nonhomo-
geneous equilibria, and we build the reaction function based on them. Consider
Ω = (−π/2, π/2) and the function

φλ(x) := λ(cos(sinx), sin(sinx)), x ∈ Ω,

defined on Ω for every λ > 0. In particular, the image of φλ is an arc of radius λ
spanning an angle of two radians. One can easily compute φ′λ(−π/2) = φ′λ(π/2) =
0. Moreover,

(8) (φ′′λ(x))1 = λ sin(x) sin(sin(x))− λ cos2 x cos(sinx),

(9) (φ′′λ(x))2 = −λ sin(x) cos(sin(x))− λ cos2 x sin(sinx).
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The vector φ′′λ(x) can be thought of as the acceleration vector of φλ(x) as x grows
from −π/2 to π/2, of course, and it points towards the inside of the circle of radius
λ, except for x = ±π/2 where it is tangential to this circle.

Let
A := {r(cos θ, sin θ) |λ1 ≤ r ≤ λ2,−1 ≤ θ ≤ 1},

for fixed 0 < λ1 < λ2 in R+. Given u ∈ A, u = r(cos θ, sin θ), we denote λ(u) := r,
x(u) := sin−1(θ). Note that these functions are well defined and smooth on A, and
that φλ(u)(x(u)) = u. Define the vector field α : A→ R2 by

(10) α(u) := −φ′′λ(u)(x(u)).

Proposition 2. There exists a smooth function g : R2 → R2 such that i) g = α on
the set A, and ii) all solutions of the system

(11)
dui
dt

= gi(u), i = 1, 2,

converge towards a single equilibrium.

Proof. We start with some basic facts about α(u) for u ∈ A. It follows from
equation (8) that α1(u) > 0 for u2 = 0 (since x(u) = 0). It also follows, from
equation (9), that α2(u) > 0, α2(u) < 0, and α2(u) = 0 whenever u2 > 0, u2 < 0,
and u2 = 0, respectively (since x(u) > 0, x(u) < 0, and x(u) = 0 in each case).

By (10) and the definition of x(u), λ(u), the function α is smooth on A. Let α1

and α2 be embedded into smooth functions defined on a closed neighborhood A′

of A, in such a way that both properties in the previous paragraph still hold on A′

for the embedding function, which we also denote by α.
LetA′′ be a closed neighborhood ofA′. Consider three smooth functions ρ1, ρ2, ρ3 :

R2 → [0, 1] forming a partition of unity of R2, in the sense that
(1) ρ1(u) + ρ2(u) + ρ(u) = 1 for every u ∈ R2,
(2) ρ1(u) ≡ 1 on A, ρ1(u) ≡ 0 on R2 − int (A′), and ρ1(u) ∈ (0, 1) otherwise.
(3) ρ3(u) ≡ 0 on A′, ρ3(u) ≡ 1 on R2 − int (A′′), and ρ1(u) ∈ (0, 1) otherwise.

In particular, ρ2 = 1− ρ1 on A′ −A, ρ2 = 1− ρ3 on A′′ −A′.
Let e = (e1, 0), for a fixed e1 > 0 such that e1 > a1 for every a = (a1, a2) ∈ A′′.

Let g : R2 → R2 be defined by

g(u) := ρ1(u)α(u) + ρ2(u)(1, 0) + ρ3(u)(e− u).

It is clear that g is smooth and that g ≡ α on A by construction. We use
the Poincare-Bendixson theorem to show that every solution of (11) must converge
towards e. First note that g ≡ e − u outside of a bounded subset of R2, therefore
a closed circular region centered on e is invariant and attracts all solutions. We
show below that g has only one equilibrium; therefore every solution must converge
towards e or towards some periodic orbit. But any periodic orbit would contain e
inside its enclosed area; see for instance [13], Section 6.8. Moreover, g2(u1, 0) = 0
for every u1 ∈ R, since this is true for each of the vector fields α, u → e − u and
u → (1, 0). Therefore the u1 axis {(u1, 0) |u1 ∈ R} is an invariant subset of (11);
this proves that no periodic solutions can exist by the principle of nonintersecting
orbits [13], and that every solution converges towards e.

It remains to show that g has only one equilibrium. We show this by considering
the various subsets of the partition in R2. If u ∈ A, it holds g(u) = α(u) 6= 0 by the
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comments in the beginning of the proof. If u ∈ int(A′) − A, then still ρ1(u) > 0,
and for u2 6= 0,

g2(u) = ρ1(u)α2(u) + ρ2(u) · 0 = ρ1(u)α2(u) 6= 0,
by the construction of the extension of α to A′. Also, for u2 = 0,

g1(u) = ρ1(u)α1(u) + ρ2(u) · 1 > 0.

If u ∈ R2 − int (A′), such that u1 < e1, then ρ1(u) = 0, and

g1(u) = ρ2(u) · 1 + ρ3(u)(e1 − u1) > 0.

If u1 ≥ e, then g(u) = e− u, and g(u) 6= 0 unless u = e. �

Corollary 1. Let g be as in Proposition 2, and let λ ∈ [λ1, λ2]. Then the function
φλ is an equilibrium of the system

(12)
∂ui
∂t

= ∆ui + gi(u), i = 1, 2,

on C(Ω,R2), under Neumann boundary conditions.

Proof. By construction of α on A, it holds for every λ ∈ [λ1, λ2], x ∈ Ω, that
α(φλ(x)) = −φ′′λ(x). Thus 0 = φ′′λ(x) + α(φλ(x)) = φ′′λ(x) + f(φλ(x)). It was
calculated that φ′λ(−π/2) = φ′λ(−π/2) = 0, λ > 0; this satisfies the required
boundary conditions. �

Proof of Theorem 2:

Proof. We use the function g from Proposition 2 in the context of Theorem 1. Let
π : R2 → H ⊆ R3 be a linear, metric preserving bijection. Define a smooth function
g̃ : H → H by g̃ := π ◦ g ◦ π−1. Then use Theorem 1 to embed this function into a
strongly cooperative system (1).

Recall from the proof of Proposition 2 that g = e− u outside of a bounded set.
If |u| > e1, g(u) = u − e, then u ◦ g(u) = u ◦ e − u ◦ u = u1e1 − |u|2 < 0. Since
the bijection π preserves angles, this condition is also satisfied for g̃ outside of a
bounded region R. Thus we can use item 4. of Theorem 1 to conclude that f has
a unique equilibrium on H.

It follows automatically from Theorem 1 that ∂fi/∂uj > 0 for every u and i 6= j.
Every solution of (1) outside of the H converges towards ±(P, . . . P ) (Theorem 1,
item 3.), and every solution of (1) in H converges towards π(e) by Proposition 2.
Thus every solution of (1) converges towards one of only three equilibria.

Let u(x) := φλ(x), λ ∈ [λ1, λ2], be any of the nonhomogeneous equilibria of (12),
so that u′′(x) + g(u(x)) = 0 for every x ∈ Ω. Let ũ(x) := π(u(x)). By evaluating π
on both sides of the previous equation we obtain

0 = πu′′(x) + πg(u(x)) = ũ′′(x) + g̃(ũ(x)) = ũ′′(x) + f(ũ(x)).
Thus ũ is an equilibrium of (3). After varying λ over [λ1, λ2], the third statement
follows. �

One might imagine a strengthening of Theorem 2 in which every solution of the
reaction system (1) converges towards a single equilibrium e. A standard ‘sandwich’
argument shows that this is impossible: let (1) be strongly cooperative and converge
globally towards e ∈ Rn. Then all solutions of the reaction diffusion system (3)
must converge towards e as well. To see this, let u(x, t) be any solution of (3),
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and let v ≤ u(x, 0) ≤ w componentwise, for some v, w ∈ Rn. If v(t), w(t) are the
solutions of (1) with initial conditions v, w respectively, then v(t), w(t) also form
spatially homogeneous solutions of (3), and v(t) ≤ u(x, t) ≤ w(t) componentwise
for all t, by cooperativity [12]. But v(t), w(t) converge towards e, therefore so does
u(t, x).
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