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syllabus

1. the role of mathematics in biology

2. homeostasis of the organism

3. the complexity of evolution

4. weak linkage and learning

5. timescale separation and the linear framework



0.  preamble



weak linkage yields combinatorial complexity

weak linkage 
mechanism

many inputs

output

1

2

1

3

4

by undertaking scalable integration, weak linkage mechanisms acquire substantial 
internal state through combinatorial complexity

● allostery – multiple conformations and patterns of binding

● PTMs – multiple patterns of modification (“modforms”)

● genes – multiple patterns of transcription factor (TF) binding

the “linear framework” is a mathematical method for calculating the input-output 
responses of such mechanisms, using timescale separation to eliminate the 
combinatorial complexity



1.  timescale separation



timescale separation

“slow”“fast”

steady state

system

sub-system

mathematically eliminating the components of a sub-system by assuming the sub-
system is at steady state

timescale separation is often used to simplify the mathematics even when the steady-
state assumption is difficult to justify – often with surprisingly good results



michaelis & menten

Michaelis & Menten, “Die kinetik der Invertinwirkung”, Biochem Z, 49:333-69, 1913

1879-1960 1875-1949

ESE  +  S E  +  P
elimination

of the fast components
“slow”“fast”

under the in-vitro conditions which they used, 
substrate was in substantial excess over enzyme, 
so it seemed reasonable to assume that they 
(hypothetical) enzyme-substrate complex was a 
“fast” component



2.  graphs and the linear framework



labelled, directed graphs

a graph consists of vertices (or nodes), 
with at most one edge between any two 
distinct vertices 

the graph is directed – each edge has a 
specified direction, denoted by an arrow at 
one end

the graph is labelled on each edge. 
labels have units of (time)-1

we shall work with graphs which are connected (in one piece, forgetting edge 
directions) and which have no self-loops

such graphs usually represent the sub-system that is at steady state. the vertices 
represent “fast” components; the edges represent reactions; and the labels 
represent the influence of the “slow” components



the linear framework

a1 a2

1
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3

a3

a4

Laplacian matrix

the dynamics on graphs is “one-dimensional” chemistry – each edge is considered as 
a chemical reaction under mass-action kinetics, with the label as the rate constant

system of linear ODEs

conservation law:

Gunawardena, “A linear framework for time-scale separation in nonlinear biochemical systems”, 
PLoS ONE 7:e36321 2012; Mirzaev & Gunawardena, “Laplacian dynamics on general graphs”, 
Bull Math Biol 75:2118-49 2013; Gunawardena, “Time-scale separation: Michaelis and Menten's 
old idea, still bearing fruit”, FEBS J 281:473-88 2014.

discretised diffusion equation



the nonlinearity is rewritten using the labels

ESE  +  S E  +  P
k1

k2 k4

k3
E ES

k1[S] + k4[P]

k2 + k3

nonlinear dynamics

linear Laplacian dynamics

reversible Michaelis-Menten scheme



uncoupling and the labels

the nonlinearity in the labels is dealt with in different ways, depending on the 
application 

● approximation 

● conservation law  

● singular perturbation

uncoupling condition – the labels cannot have concentrations of components 
which are also vertices in the graph

● hierarchical graphs – labels are  given by components in a different graph



microscopic interpretation

let           be a time-homogeneous Markov process on the states                      

for which infinitesimal transition rates exist –

define the graph,         , with vertices                  and an edge              iff 

give this edge the label 

the master equation (Kolmogorov forward equation), for the probability of        

Mirzaev & Gunawardena, “Laplacian dynamics on general graphs”, Bull Math Biol 75:2118-49 2013

 being in state i  at time t, is identical to Laplacian dynamics on           

      



3.  calculating steady states



uniqueness of steady states

for any graph, G, Laplacian dynamics always tends to a steady state

if G is strongly connected, the steady state is unique up to a scalar multiple

Mirzaev, Gunawardena, Bull Math Biol 75:2118-49 2013

a1 a2
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a4

a1 a2
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a3

a4

not SC SC

strongly connected – there is a directed path 
between any two distinct vertices 



the matrix-tree theorem gives a canonical s.s

Matrix-Tree Theorem (MTT): whenever G is strongly connected

rooted spanning tree – a sub-graph T of G which 

  SPANS G –  every node of G is also a node of T

  is a TREE –  T has no cycles, ignoring edge directions

  is ROOTED at i –  i is the only node of T with no outgoing edges

Bill Tutte, “The dissection of equilateral triangles into equilateral triangles”, Proc Camb Phil 
Soc 44:463-82 1948; Mirzaev & Gunawardena, Bull Math Biol 75:2118-49 2013 – Appendix 
gives a proof of the MTT

set of spanning trees rooted at i



spanning trees and the MTT
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Laplacian 



how elimination works

if there is a steady state

then each of the        can be eliminated in favour of the 

reference node

when G is strongly connected, so that 

and the        are given in terms of the edge labels by the MTT



example – reversible michaelis-menten

ESE ES

k1[S] + k4[P]

k2 + k3

E ES

k2 + k3

E

k1[S] + k4[P]

enumeration of spanning trees

elimination

example – reversible michaelis-menten II



example – reversible michaelis-menten II

Athel Cornish-Bowden, Fundamentals of Enzyme Kinetics,  2nd edition, Portland Press, 2001

forward & reverse Michaelis-Menten constantsforward & reverse maximal rates

ESE  +  S E  +  P
k1

k2 k4

k3

substitute steady-state 
values of “fast” 

components from MTT



e pluribus unum

Gunawardena, PLoS ONE 7:e36321 2012; Mirzaev, Gunawardena; Bull Math Biol 75:2118-49 
2013; Gunawardena, FEBS J 281:473-88 2014

King & 
Altman 1956

Terrell Hill 1966

Schnakenberg 1976

BIOPHYSICS

ENZYME 
KINETICS

ELECTRICAL 
ENGINEERING

NON-EQUILIBRIUM 
STATISTICAL 
MECHANICS

MARKOV 
PROCESSES

ECONOMICS

Bott & 
Mayberry 1954

COMPUTER 
SCIENCE

GRAPH 
THEORY

Tutte 1948

 
QUANTUM FIELD 

THEORY

Kirchhoff 1848

independent discoveries of the MTT



4.  equilibrium and energy



(thermodynamic) equilibrium is a very special s.s.

principle of detailed balance: at thermodynamic equilibrium, every reaction is 
reversible and each pair of reversible reactions is separately at equilibrium, 
irrespective of any other reactions in which the components participate

Gilbert Lewis, “A new principle of equilibrium”, PNAS 11:179-83 1925; Mahan, “Microscopic 
reversibility and detailed balance; an analysis”, J Chem Edu 52:299-302 1975

BA

C

k2

k4

k3k6

k5

k1

cycle condition



the MTT simplifies at equilibrium

1
a1

b1

a2

b2

i
ak

bk

.  .  .

detailed balance

steady-state calculations become equivalent to equilibrium statistical mechanics

if the steady-state is one of thermodynamic equilibrium, then it is not necessary to 
enumerate spanning trees - 

free energy landscape

BUT the MTT remains valid away from equilibrium and thereby gives a restricted 
form of non-equilibrium statistical mechanics



the hopfield barrier

thermodynamic equilibrium sets an upper bound to how well information processing 
tasks can be undertaken by a biochemical system. 

the only way to exceed this barrier is to dissipate energy and maintain the system 
away from equilibrium

“THE HOPFIELD BARRIER”

Estrada, Wong, DePace, Gunawardena, “Information integration and energy expenditure in gene 
regulation”, Cell 166:234-44 2016 



the problem of path-dependence

at thermodynamic equilibrium, the MTT simplifies – it is only necessary to use a 
single path in the graph to calculate steady-state probabilities

away from thermodynamic equilibrium, it is necessary to enumerate all rooted 
spanning trees in the graph – each path in the graph contributes

the number of spanning trees increases super-exponentially in the size of the graph

we need new mathematical ideas to address this problem

Ahsendorf, Wong, Eils, Gunawardena, BMC Biol 12:102 2014; Estrada, Wong, DePace, 
Gunawardena, Cell 166:234-44 2016 



4.  gene regulation



bacterial gene regulation

● specificity comes through transcription factors (TFs)
● long binding motifs, ~16bp on average
● information is conveyed over short distances 

through pairwise cooperative interactions between TF-TF, TF-RNAP
● regulation takes place without energy expenditure

pairwise 
cooperativities

affinities TSS

promoter < 1Kbp

Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, Kuhlman, Phillips, “Transcriptional regulation by 
the numbers I & II”, Curr Opin Gen Dev 15:116-24 & 125-35 2005



eukaryotic gene regulation

● hierarchical spatial organisation
● information integration over long distances
● co-regulatory complexes linking information sources
● short TF binding motifs, ~8bp on average
● many forms of energy expenditure – 

● chromatin reorganisation
● nucleosome remodelling
● PTM of histones, TFs, co-regulators, RNAP, ...

Lelli, Slattery, Mann, Annu Rev Genet 46:43-68 2012; Allen, Taatjes, Nature Rev Mol Cell Biol 
16:155-66 2015; (*) Ong, Corces, Nature Rev Genet 12:283-93 2011 

enhancer
Mediator



linear framework graphs

Ahsendorf, Wong, Eils, Gunawardena, “A framework for modelling gene regulation which 
accommodates non-equilibrium mechanisms", BMC Biol 12:102 2014.

vertices are  “snapshots” 
of DNA context at an 
appropriate level of 

granularity 



graph for studying information integration

updated from Estrada, Wong, DePace, Gunawardena, Cell 166:234-44 2016. 

transcription 
factor (TF)

RNA Pol II
polymerase

P

single transcriptional activator binding at n sites (n = 2 is shown below)



underlying assumptions

● the graph is at thermodynamic equilibrium

● expression is averaged – the rate of mRNA expression is proportional to the 
steady-state probability of RNA polymerase being present

● molecular complexity arising from chromatin, co-regulators, etc is not 
explicitly represented but is assumed to influence the edge labels

● in particular, this allows for “higher-order” cooperativity

pairwise 
cooperativity

higher-order 
cooperativity



binding and unbinding at equilibrium

3 4 P1 2

L P

binding affinity



higher-order cooperativity

TF-TF TF-RNAP

higher-order 
cooperativities

two kinds of “higher-order” cooperativity

detailed balance must be considered – the parameters are not independent!

independent generators

the “order” of cooperativity is            ; pairwise cooperativity is 



sharpness in gene regulation

normalisation

gene regulation function – 

“position”

“steepness”



Hb expression

Hill function

“consistent with the idea that Hb transcription is activated by cooperative binding 
of effectively five Bcd molecules”

pairwise cooperativity

Gregor, Tank, Wieschaus, Bialek, “Probing the limits to positional information”, Cell 130:153-64 
2007

sharpness in Drosophila embryo patterning

Hunchback is sharply expressed in response to maternal Bicoid 



higher-order cooperativity is essential

Hill functions

data for Drosophila 
Hunchback from a 
synthetic P2 promoter, 
with 6 binding sites for 
the Bicoid activator; 
average

all higher-order 
cooperativities

pairwise TF-RNAP 
cooperativities

pairwise TF-TF 
cooperativities

position

st
e
e
p

n
e
ss

transcriptional activator on 6 sites,

sampled uniformly in [-3,3]

updated from Estrada, Wong, DePace, Gunawardena, Cell 166:234-44 2016. 



how does higher-order cooperativity arise?

conformational ensembles can yield arbitrary higher-order cooperativities

provided the ensemble is sufficiently complex

which seems to happen in gene regulation

Mediator 
conformations from 

cryoEM

Biddle, Martinez-Corral, Wong, Gunawardena,“Allosteric conformational ensembles integrate 
information through higher-order cooperativity”, in preparation, 2018; Taatjes et al, Science 
295:1058-62 2002



those who did the work

Angela 
DePace

Javier 
Estrada

Kate 
Shulgina

John
Biddle

Jeehae
Park

Rosa
Martinez-Corral

Felix
Wong



● what are the hopfield barriers for different information processing tasks?

summing up and some questions

● systems biology – how do we get from dead molecules to living organisms?

● are there levels of representation for cells and organisms, analogous to those 
found in neuroscience?

● what is a minimal mathematical model for homeostasis that accounts for 
known physiology and individual variation?

● scalable integration through weak linkage can reconcile population genetics, 
developmental biology and the evolution of complexity

● does learning by weak linkage take place within the organism as it develops, 
thereby allowing for “developmental selection”?

● steady-state input-output response characteristics of weak linkage 
mechanisms can be mathematically analysed using the linear framework

● how do we analyse time-varying input-output responses?

● how do we solve the problem of path dependence away from equilibrium?
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