Computational analysis of the ENCODE datasets and other related epigenetic explorations

Ved Topkar

Harvard College class of 2016

Gunawardena Lab Harvard Medical School Department of Systems Biology 13 August 2013

Presentation Goals

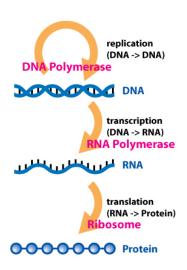
- FULL understanding of discussed material
- Ask questions along the way!

Outline

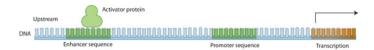
- Molecular biology in a jiffy
- A case study
 - Hypothesis formulation
 - Analyzing data
- More examples

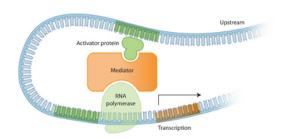
Outline


- Molecular biology in a jiffy
- A case study
 - Hypothesis formulation
 - Analyzing data
- More examples

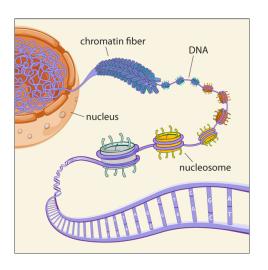

Outline

- Molecular biology in a jiffy
- A case study
 - Hypothesis formulation
 - Analyzing data
- More examples


The Cell



The Central Dogma



Transcriptional Regulation

Transcriptional Access

Epigenetics and Gene Expression

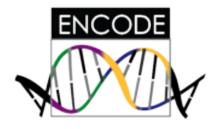
Things beyond just the base pairs in DNA matter \rightarrow gene expression

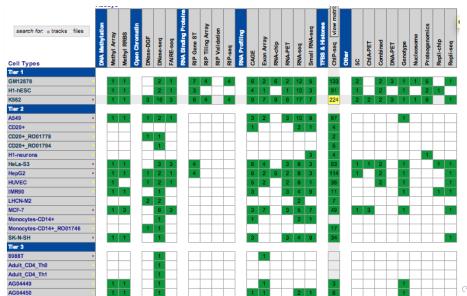
The Question

Analyze the ENCODE dataset

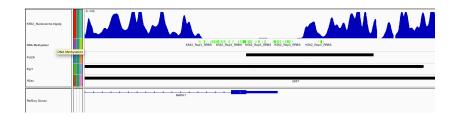
The Question

Analyze the ENCODE dataset




ENCODE (Overview)

Overview


- National Human Genome Institute: Encyclopedia of DNA Elements (ENCODE)
- Nearly 600 collaborating labs post HGP

The Data Set

Data Types

- Raw signals
- Raw signal peak calling outputs (e.g. PeakSeq results)
- Relatively course-grain peak data

The Game Plan

Can we reduce transcription factor binding landscapes into categories?

- Scan across genome, looking for promoters
- Bin promoters appropriately
- Score binding at each promoter
- Clustering analysis

RefSeq

Overview

- Curated database of genes
- New versions released as frequently as Firefox
- Includes pseudogenes, haplotype variations, and predicted genes

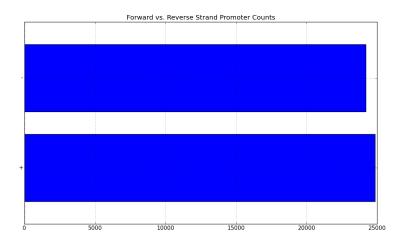
- Only upstream from TSS?
- Incredibly far regulatory regions?
- Intronic regulation?
- Post termination regulatory elements?
- 1000 bp upstream

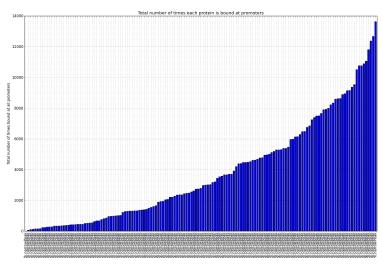
- Only upstream from TSS?
- Incredibly far regulatory regions?
- Intronic regulation?
- Post termination regulatory elements?
- 1000 bp upstream

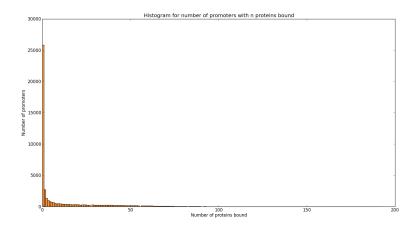
- Only upstream from TSS?
- Incredibly far regulatory regions?
- Intronic regulation?
- Post termination regulatory elements?
- 1000 bp upstream

- Only upstream from TSS?
- Incredibly far regulatory regions?
- Intronic regulation?
- Post termination regulatory elements?
- 1000 bp upstream

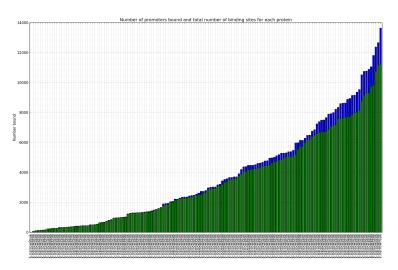
- Only upstream from TSS?
- Incredibly far regulatory regions?
- Intronic regulation?
- Post termination regulatory elements?
- 1000 bp upstream

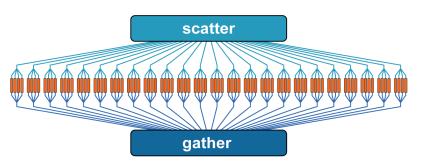

- How do we quantitatively analyze promoter presence?
- Break promoter regions into bins for a finer metric?
- Do we give weights to bins as a function of their position?
- Single, unweighted 1000 bp bin of counts


- How do we quantitatively analyze promoter presence?
- Break promoter regions into bins for a finer metric?
- Do we give weights to bins as a function of their position?
- Single, unweighted 1000 bp bin of counts


- How do we quantitatively analyze promoter presence?
- Break promoter regions into bins for a finer metric?
- Do we give weights to bins as a function of their position?
- Single, unweighted 1000 bp bin of counts

- How do we quantitatively analyze promoter presence?
- Break promoter regions into bins for a finer metric?
- Do we give weights to bins as a function of their position?
- Single, unweighted 1000 bp bin of counts


Forward vs. Backward Strand



Promoter/TFBS intersections

Computational Efficiency

- This was an exercise in program optimization
- Original algorithm took about 5 days, optimized/parallelized algorithm took just a few hours

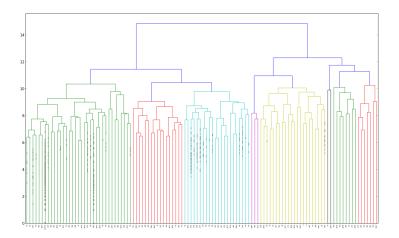
The unsupervised grouping of information such that groups have similar elements that are dissimilar from elements in other groups


Minkowski Distance ($p = 2 \rightarrow$ Euclidean Distance)

$$\left(\sum_{i=1}^{n}|x_{i}-y_{i}|^{p}\right)^{\frac{1}{p}}$$

Simple Linkage Clustering

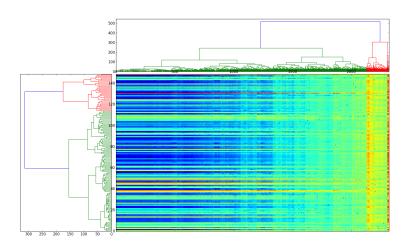
$$D(X, Y) = min(d(x, y)) \forall (x, y) \epsilon(X, Y)$$

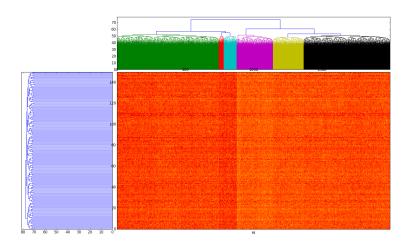

Clustering (simple linkage exhibiting chaining)

Complete Linkage Clustering

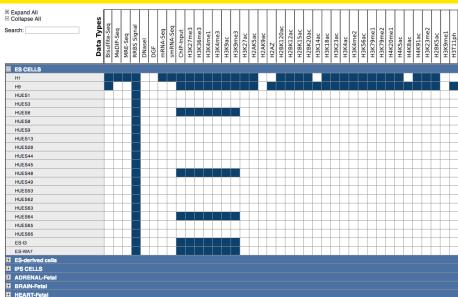
$$D(X, Y) = max(d(x, y)) \forall (x, y) \epsilon(X, Y)$$

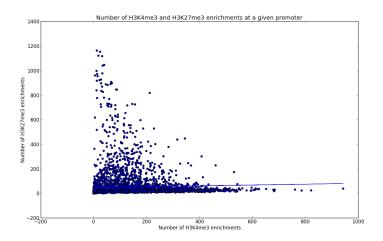
Clustering (complete linkage)




Computational Efficiency

Pairwise distance calculations require a LOT of RAM


2-way clustering heatmap


2-way clustering heatmap (with random data arrays)

Histone Modifications (Roadmap Dataset)

A quick correlation test

R = 0.042

Conclusions

- There are numerous methods of promoter binning that prove useful for complexity reduction
- Unsupervised clustering of preprocessed promoter data yield results with biological significance

Next Steps

- Incorporation of nucleosome enrichment, methylation, and histone modification data in a more meaningful way
- Further refining of cluster analysis pipeline to uncover more unknown biology

Thanks!

- Jeremy Gunawardena and the HMS Department of Systems Biology!
- My collaborator Tobias Ahsendorf!
- PRISE and Greg Llacer!
- The lovely PRISE staff!
- This audience!

