NETWORK RECONSTRUCTION OF BIOCHEMICAL PATHWAYS USING DISCRETE DYNAMICAL SYSTEMS

Roxana Feier

PRISE 2011

Why mathematical models?

- **Golden age** for quantitative models:
 - DNA sequencing → large-scale measurements of chemical species (e.g. gene transcripts) within a pathway
- Such models are predictive:
 - Modify parameters to understand how change affects function
- Feedback loop between theory and experiment
 - Experimental data → model → hypotheses to be tested experimentally → better models → better experiments → ...

The Wnt pathway

- Embryogenesis and adult tissue homeostasis
- Components mutated in ~90% of colorectal cancers
- Quantitative models

 → understand how
 change affects
 function → modulate
 these effects

Interpolate data, recover dependencies

- N species {X1, ..., XN}
- Given: time-series data {s1, s2, s3, ...}
 - sj \rightarrow vector of length N with concentrations at time j
- Want: F = (f1, ..., fN) with F(s1) = s2, ...
 - fj is the **transition function** for xj
- Species that appear in fj → connected to xj in the reconstructed network

Problem ...

Many, many functions that fit a relatively small amount of data.

Algebraic geometry to the rescue!

- Problem: many functions that interpolate a finite amount of data
- Solution: use discrete values for the concentrations
 - k = {0, 1, ..., p − 1}
- Theorem: any function f : k^N → k is a polynomial

From the data to the network

Step 1: Discretize the continuous data

- Summary: Pick a prime p, discrete values will be 0, 1, ..., p 1.
- Plus: Keep essential information only: initial data is noisy.
- Minus: How to choose p?

Time	X	У	Z
1	0.9	0.92	0.89
2	0.47	0.27	0.26
3	0.24	0.39	0.42

Time	X	У	Z
1	2	2	2
2	1	0	0
3	0	1	1

Step 2: Combine multiple datasets

- Summary: Use both wildtype and knockout/knockdown data.
- Plus: Better exploration of the space of all possible states.
- Minus: Can lead to inconsistencies upon discretization.

With memory \rightarrow much fewer inconsistencies

2

 $\mathbf{0}$

Same F??

Step 3: Find all models that fit the data

- Summary: Solutions of the form F + H where F fits the model and H vanishes on the given data (compare to differential equations).
- Plus: Finds all solutions!
- Minus: Finding all H that vanish on the data is computationally hard.

Time	X	У	Z	
1	2	2	2	F
2	1	0	0	\leq
3	0	1	1	/F

For example: F(x, y, z) = $(y^2, y + 1, 2y - z + 1)$

Check:

F(2, 2, 2) = (1, 0, 0)F(1, 0, 0) = (0, 1, 1)

Step 4: Select the best model

- Summary: Pick a model which is minimal in some sense.
- Plus: Can incorporate prior knowledge about the network.
- Minus: What does "minimal" mean?

Time	X	У	z	
1	2	2	2) F
2	1	0	0	2
3	0	1	1	/F

$$F(x, y, z) = y^2, y + 1, \frac{2y - z + 1}{2}$$

But y - z = 0 on the dataset.

Better: $F(x, y, z) = (y^2, y + 1, y + 1)$

Final step: reconstruct the network

- The network is a directed graph
- The nodes are the species
- If the function for x coordinate depends on y, draw an edge from y to x.
- Our toy example: $F(x, y, z) = (y^2, y + 1, y + 1)$

Example 1: One-site phosporylation

- No false negatives
- Two false positives
 - Due to indirect influence?

Example 2: the Wnt pathway

- 17 species, data simulated from ODE model
- Preliminary results:
 - 160 out of 17² = 279 interactions detected
 - Many false positives
 - Few false negatives

Summary

What next?

- How to choose p?
- What makes good data?
- How does noise affect the reconstruction?
- How do coefficients in the transition functions correlate with strengths of interactions between species?

Thank you!

- Prof. Jeremy Gunawardena
- Dr. Bobby Karp
- Bianca Dumitrascu & Stefano de Pretis
- HHMI-IUF, FAS Center for Systems Biology
- Greg Llacer & PRISE
- This audience!