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Figure 1: The Linear Framework
A labeled directed graph, G, gives rise to a system of linear differential equations by 

treating each edge as a first-order chemical reaction under mass-action kinetics, with 

the label as rate constants. The corresponding matrix is the Laplacian of G.1

Figure 2: Free-Energy Landscape of Protein Conformations
A. Schematic energy landscape for three-state protein conformations. B. Simplified energy 

landscape.3

Figure 3: Example MD Algorithm and MSM

A. Basic MD algorithm.4 B. Simple Markov state model.5

Figure 4: Discretization of State Space
The true continuous dynamics (dashed line) is projected onto the discrete state space.6

Figure 8: Illustrative Markov State Model Analysis
A. PyEMMA software pipeline. B. Projection of a trajectory onto the slow collective coordinates 

(independent coordinates, ICs). C. Free energy landscape computed from a function of the two 

slowest ICs. D. Result of k-means clustering. E. Probability distributions for the four longest living 

metastable states determined through PCCA. F. Conformation graph obtained from a hidden 

Markov model based coarse-graining of the MSM. Rates are in ns-1.8

1. Gunawardena J. PLoS ONE, 7:e36321, 2012.

2. Mirazaev I and Gunawardena J. Bull. Math. Biol., 75:2118, 49, 2013.

3. Zhang Y, Jiao J, Rebane, A. Biophys. J., 111, 2110-2124, 2016.

4. Hospital A, Goñi JR, Orozco M, Gelpí JL. Adv. Appl. Bioinform. Chem., 2015:8 37-47, 2015.

5. "MATLAB - A Fundamental Tool For Scientific Computing And Engineering Applications - Volume 2." Intechopen.com. N. p., 

2017. 

6. Prinz et al. J. Chem. Phys., 134, 174105, 2011.

7. Noé F and Clementi C. Curr. Opin. Struct. Biol., 43:141-147, 2017.

8. Scherer M, et al. J. Chem. Theory Comput., 11, 5525-5542, 2015.

9. Sadiq S, Noé F, De Fabritiis G. Proc. Natl. Acad. Sci. USA, 109:50 20449-20454, 2012.

10. Kohlhoff K, et al. Nat. Chem., 6, 15-21, 2013. 

11. Noé F, Wu H, Prinz, J, Plattner N. J. Chem. Phys., 139, 184114, 2013. 

12. Wieczorek M, et al. Nat. Commun., 7:13224, 2016.

13. Plattner N, Doerr S, De Fabritiis G, Noé F. Nat. Chem., Advanced online publication, 2017.

14. Plattner N and Noé F. Nat. Commun., 6:7653, 2015.

Proteins are dynamic – they do not remain in a single, static conformation.

Proteins exist in an ensemble of conformations, continually interconverting

between conformations with varying energies. This ensemble of

conformations has a certain distribution that can be described by the

underlying free-energy landscape. This landscape exists in some extreme

high-dimensional phase space of atomic motions. Often, the landscape is

approximated in a highly-reduced view but in recent years it has been

explored more directly through the use of molecular dynamics (MD)

methods. A more discriminating approximation of the energy landscape is

through the use of Markov state models (MSMs), which can approximate the

free energy landscape by using the results of MD simulations. The states of

a MSM are the free-energy minima, while the rates of transition between the

states depend on the shape of the hills, and particularly the saddle points,

surrounding the minima. From the resulting MSM, a protein conformation

graph can be obtained.

The linear framework is a mathematical framework for doing time-scale

separation in biochemical systems. It is based on graph theory and

polynomial algebra. The framework allows for the elimination of the

overwhelming molecular complexity found in cellular mechanisms such as

allostery, post-translational modification, and gene regulation, and the

construction of mathematical representations of how these mechanisms

process information.
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Figure 5: Identification of Slow Timescales

A. Potential energy function with four metastable states and corresponding stationary 

density. B. Eigenvalues of the transfer operator, the gap between the four metastable 

processes and the fast processes is clearly visible.6
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Figure 6: tICA Algorithm
(1) Evaluate each basis function on all configurations sampled in a trajectory, (2) estimate 

covariance and time-lagged covariance matrix, (3) compute eigenvalues/eigenvectors, (4) 

project data matrix onto the eigenfunctions.7
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Figure 7: Clustering Methods
A. Geometric clustering – k-means.8 B. Kinetic clustering – Perron cluster analysis.9 C. 3000-

state model constructed using k-means and then coarse-grained to a 10-state model using 

PCCA.10
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Connecting the Linear Framework to 

Markov Models

Theorem2 Let X be any continuous time, finite-state space Markov process 

that is time homogenous, for which transition rates may be determined by:

The master equation of X is identical to Laplacian dynamics on the graph 

GX:

To construct a MSM, the full continuous state space must be somehow

discretized to obtain a tractable description of the dynamics. By performing a

state space discretization, continuous states are grouped into discrete

states, thus “erasing” information of the exact location within these states

and “projecting” a continuous trajectory onto a discrete trajectory. The aim is

to understand the process of transitioning from a free-energy landscape to a

MSM and the resulting conformation graph. These conformation graphs

provide the link required to begin formulating a description through the

Gunawardena lab’s linear framework.

Conformation Graph Examples

Figure 9: Three-state conformation graph of bovine pancreatic trypsin inhibitor (BPTI) using a 

1 ms simulation trajectory.11

Figure 10: Three-state conformation graph of a peptide-major histocompatibility class II 

complex (pMHCII) using a 90 μs simulation trajectory.12

Figure 11: Coarse-grained conformation graph of the bacterial ribonuclease barnase and its 

inhibitor barstar using 2 ms of aggregate length simulation trajectories.13

Just as protein conformational ensembles can be described by the

free-energy landscape, so too can allostery. As its role in cellular

information processing becomes clearer, the subject of allosteric

regulation seems ripe for mathematical reconsideration. In trying to

represent allostery in terms of a graph, we know the ratios of the rate

constants but the individual values are harder to obtain. Because the

ratios are the only parameters that matter at thermodynamic

equilibrium, this suggests that a different kind of equilibrium graph will

provide a more sparing representation. The main goal is to define an

equilibrium basic combined graph in terms of a conformation graph and

a binding graph and to derive a formula for allosteric regulation using

coarse-graining.

Figure 12: Basic Combined 

Graph Example:

Network of Trypsin-Benzamidine 

binding and Trypsin 

conformational dynamics.14


