
Abstract
Synthetic Transcription Factors (STFs) designed by the Collins Lab 
have shown an unusually strong ability to amplify gene expression by 
simply adding tandem operators. The Polymerase Model was used to 
analyze this system in hopes to understand the cooperativity values 
associated with such large effects. The result of this procedure was a 
rational expression that exhibited strange and not completely 
understood implications on the cooperativity values we sought. 
Although our model’s analysis is not finished, it seems to be hinting 
at ample amounts of restrictions and very large higher-order 
cooperativity values that should be dissected further to understand 
their mechanisms and possible implications in designing STFs in the 
future.

Synthetic Transcription Factor Cooperativity Analysis
Using ODE Polymerase Model

Polymerase Model
The Polymerase Model takes the form
of an ordinary differential equation 
describing the rate of change in a gene’s 
mRNA product concentration, effectively
showing how heavily a gene is being 
expressed at steady-state. This equation
is based on the probabilities of the 

various possible microstates for a gene 
of interest. Two unique stipulations in the Polymerase Model are that only the 
microstates with RNA Polymerase bound are responsible for the production of 
mRNA and RNA Polymerase cannot be bound without at least one 
transcription factor preceding it. Each microstate’s probability is calculated 
with concentrations (x,y, and z), cooperativities (Ω and ω’s), and binding 
affinities (K’s).

1-Operator vs. 2 Operator
Model Comparison Results

The concentrations of the STFs are at saturation in the system of 
interest, so the limit of these equations as the STF concentrations 
approach infinity are taken. These limits are what were compared. 
After setting the limit of E2 equal to 14 times the limit of E1 and 
simplifying, the resulting equation is:

Ω =
14ω12

1 − 13𝐾3𝑧

This result is a rational expression but it has strange behaviors and 
implications due to its denominator’s inability to equal 0 and the fact 
that cooperativities cannot be negative.

STF Polymerase Models
When applied to the system of interest, the Polymerase model was used twice. 
First to make an equation for the STF with only 1 operator, then for the STF 
with 2. These equations put the expression level of the gene (or E1 and E2) in 
terms of the individual microstates’ probabilities. 

Figure 3: Microstates in 1-Operator Polymerase Model

Due to there being multiple elements that potentially have unique cooperative 
behaviors, a higher-order cooperativity (Ω) is introduced into the equation for 
the 2-operator model that wasn’t present in the 1-operator model.

Figure 4: Microstates in 2-Operator Polymerase Model

Background
In the Collins Lab’s publication, “A Synthetic Biology Framework for 
Programming Synthetic Eukaryotic Transcription Factors,” an 
interesting observation was made. The transcriptional outputs of 
STFs with different numbers of tandem operators were measured, 
and there was a vast difference in output depending on the operator 
count. In particular, the STF with two distinct operators had 14x the 
transcriptional output of the STF with only one. Meanwhile, a similar 
system that utilized two different STFs (each with a single operator) 
had an increase in output of only 1.5x. The pronounced difference in 
output due to operator count in is rarely observed in natural contexts 
and warranted further attention. 

Figure 1: sTF Transcriptional Output data from Collins’s paper

Discussion
Analysis of the resulting cooperativity equation has not yet been fully 
completed, but our initial outlook on it is that there are several 
important restrictions necessary to allow it to be valid. Since the 
denominator in the equation cannot be 0, there is an asymptote 
restricting the range of 𝐾3 and z values. Additionally, cooperativities 
cannot equal 0, as they are defined to be greater than 0. A ‘negative’ 
cooperativity is actually just below 1. To ensure both sides of the 
equation have the same sign, and can thus both be positive, 
the range of 𝐾3 and z values is further restricted to values that allow 

the product of 𝐾3 and z to be smaller than 
1

13
.

After having met these conditions though, one side of the equation is 
still multiplied by 14, meaning the higher order cooperativity has to 
be very high in comparison to a normal cooperativity. Cooperativities 
as high as those suspected from these STFs are exceedingly rare in 
natural environments. They are of considerable interest to geneticists 
as their mechanisms could hold valuable insights into previously 
unearthed genetic regulatory effects. Thus, further study into the 
mechanisms by which this cooperativity arose are recommended and 
encouraged.
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Linear Framework
The linear framework, developed by the Gunawardena Lab, offers a 
robust basis for analysis of gene regulation on the single-gene level. 
Whether it’s used in simple prokaryotic systems or more complex 
eukaryotic systems, the linear framework has been indispensable in 
recent years for quantitative analysis of genetic regulation.[2] One of 
its various extensions, the Polymerase Model, predicts 
transcriptional output based on the binding states of transcription 
factors and RNA Polymerase. Thus, the Polymerase Model can be 
used to analyze the output of STFs observed by the Collins Lab.
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Figure 2: Example set of microstates for Polymerase 
Model [3]


