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This is a handout for SB200, “A systems approach to biology”, for the autumn semester of 2006-7.
It provides details of the theorem which I proved on the blackboard in Lecture 4, which gives a
graphical method for determining the stability of a steady state for a general autoregulatory loop.
If you have any comments or questions, and especially if you notice any misprints or errors, please
send me a message at jeremy@hms.harvard.edu.

The autoregulatory loop is shown schematically in Figure 1, where x1 and x2 are the concentrations
of protein and mRNA, respectively. This scheme allows for first-order degradation of mRNA and
protein, with (positive) rate constants b and a, respectively, but the rate of mRNA translation can
be an arbitrarily function, f(x2), of mRNA concentration and the rate of gene expression can be
an arbitrary function, g(x1), of protein concentration. This translates into the following system of
differential equations

dx1/dt = f(x2)− ax1

dx2/dt = g(x1)− bx2 ,
(1)

which defines a two-dimensional dynamical system. We assume throughout that a, b > 0.

We want to work out the stability of a steady state of this system. As we discussed in Lectures
2 and 3, the stability a steady state depends on the eigenvalues of the Jacobian matrix at that
steady state. Since this is a two-dimensional system, we can work out the stability more quickly by
calculating the determinant and the trace of the Jacobian (recall the Determinant/Trace diagram
for two-dimensional dynamical systems that we discussed in Lecture 3). It is easy to work out the
Jacobian matrix at any state x = (x1, x2). Let us call this J(x). Calculating the partial derivatives,
we find that

J(x) =

 −a
df

dx2
dg

dx1
−b

 . (2)

Note that the partial derivatives in the Jacobian can be replaced by ordinary derivatives because f
and g are each functions of only a single state variable. We see from (2) that TrJ(x) = −(a+ b) < 0,

Figure 1: The general autoregulatory loop. A single gene is transcribed into mRNA which is trans-
lated into protein which feeds back on its own expression. Both mRNA and protein are degraded.
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Figure 2: Two situations in which the x1 nullcline crosses over the x2 nullcline as x1 increases,
resulting in a stable steady state at the crossing point, x = xst. In both panels, x1 is on the
horizontal axis and x2 on the vertical axis.

independently of x. It follows that the stability of any steady state will depend soley on the sign of
the derivative of the Jacobian at that steady state. The Determinant/Trace diagram tells us that if
xst is a steady state and det J(xst) < 0, then xst is an unstable steady state, while if det J(xst) > 0,
then xst is a stable steady state. In the latter case xst could be either a stable node or a stable
spiral but to tell which, we would have to work out the discriminant of the characteristic equation
(given by Tr2− 4 det). We will not bother with that here, since all we want to do is to work out the
stability. For that we need just the determinant of the Jacobian, which is given by

det J(xst) = ab−
[(

df

dx2

)∣∣∣∣
x=xst

]
×

[(
dg

dx1

)∣∣∣∣
x=xst

]
,

where we have been careful to indicate that the derivatives need to be evaluated at x = xst.

It will be helpful for what follows to rewrite this slightly in the form

det J(xst) = ab(1− α) (3)

where α is given by

α =
[(

1
a

) (
df

dx2

)∣∣∣∣
x=xst

]
×

[(
1
b

) (
dg

dx1

)∣∣∣∣
x=xst

]
.

There is an easy way to calculate α that only depends on knowing how the nullclines cross at the
steady state. Recall that the nullclines of the dynamical system are given by setting each differential
equation in (1) separately to 0. The x1 nullcline corresponds to the set of points x in state space
which satisfy dx1/dt = 0, or, in other words, to the graph of x1 = f(x2)/a. Similarly, the x2 nullcline
corresponds to the graph of x2 = g(x1)/b. The steady states occur where the nullclines intersect.

Let us consider the simplest case first and suppose that the nullclines intersect as shown in Figure 2B.
In this case, as x1 increases from left to right, the x2 nullcline goes through the steady state into the
fourth quadrant. It follows that the tangent to the x2 nullcline at the steady state points into the
fourth quadrant. (By “tangent” we mean here the vector which just grazes the curve at the steady
state.) The slope of the tangent to the graph of a function is simply the derivative of the function.
Here, the function is x2 = g(x1)/b, whose derivative, evaluated at the steady state x = xst, is(

1
b

) (
dg

dx1

)∣∣∣∣
x=xst

(4)

Because the x2 nullcline goes from left to right into the fourth quadrant, the slope of the tangent is
negative. Hence, the quantity in (4) is negative.
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Figure 2B has the x1 nullcline going into the first quadrant. We can make a similar argument here
but we have to be careful because in this case the x1 nullcline is the graph of x1 = f(x2)/a and
the roles of x1 and x2 are reversed: the independent variable, x2, is on the vertical axis while the
dependent variable, x1, is on the horizontal axis. We can still calculate the derivative of the function
at the steady state, (

1
a

) (
df

dx2

)∣∣∣∣
x=xst

(5)

and this quantity is still equal to the slope of the tangent to the x1 nullcine but the slope has to be
measured with respect to x2 which is on the vertical, not the horizontal, axis, and increases from
bottom to top. It should be easy to see that the slope measured against the vertical axis going
from bottom to top is the reciprocal of the slope measured against the horizontal axis
going from left to right. Because the tangent to the x1 nullcline points into the first quadrant,
the quantity in (5) is the reciprocal of a positive number and is hence also positive.

If (4) is negative and (5) is positive, then, clearly,

α =
[(

1
a

) (
df

dx2

)∣∣∣∣
x=xst

]
×

[(
1
b

) (
dg

dx1

)∣∣∣∣
x=xst

]
< 0

and so it follows from (3) that
det J(xst) = ab(1− α) > 0 .

Hence, xst is a stable steady state.

Now let us consider Figure 2A. In this case both nullclines go from left to right into the first quadrant
but the x1 nullcline goes above the x2 nullcline. If we measure the slopes of the tangents at the
steady state against the x1 axis, then this is equivalent to saying that the slope of the tangent
to the x1 nullcline is greater than the slope of the tangent to the x2 nullcline. Furthermore, both
slopes are positive because the nullclines go into the first quadrant. Hence,[(

1
a

) (
df

dx2

)∣∣∣∣
x=xst

]−1

>

[(
1
b

) (
dg

dx1

)∣∣∣∣
x=xst

]
> 0 . (6)

The reciprocal on the first term arises because, as explained above, the derivative in (5) equals the
slope of the tangent to the x1 nullcline measured against the x2 axis. Because both sides of (6) are
positive (this is a point on which you have to be really careful) we can multiply across the inequality
to get

1−
[(

1
a

) (
df

dx2

)∣∣∣∣
x=xst

]
×

[(
1
b

) (
dg

dx1

)∣∣∣∣
x=xst

]
> 0 .

The quantity on the left is 1− α, so that

det J(xst) = ab(1− α) > 0 .

Hence, in this case too, xst is a stable steady state.

Finally, let us consider the situation in Figure 3. This looks similar to Figure 2A but now the x1

nullcline goes under the x2 nullcline. It follows by a similar argument to the one we just did that[(
1
b

) (
dg

dx1

)∣∣∣∣
x=xst

]
>

[(
1
a

) (
df

dx2

)∣∣∣∣
x=xst

]−1

> 0 .

Since both terms in the inequality are positive, we can multiply across to get[(
1
b

) (
dg

dx1

)∣∣∣∣
x=xst

]
×

[(
1
a

) (
df

dx2

)∣∣∣∣
x=xst

]
− 1 > 0 ,

so that 1− α < 0. Hence, in this case,

det J(xst) = ab(1− α) < 0 ,
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Figure 3: The x1 nullcline crosses below the x2 nullcline as x1 increases, resulting in an unstable
steady state at the crossing point, x = xst.

so that xst is an unstable steady state.

We can sum up what we have learned in the following result.

Theorem: Let xst by a steady state of the autoregulatory loop in Figure 1, as modelled by the
equations in (1) with a, b > 0. If the x1 nullcline crosses above the x2 nullcline at xst, as x1

increases, as shown in Figure 2A and B, then xst is a stable steady state. If the x1 nullcline crosses
below the x2 nullcline at xst, as shown in Figure 3, then xst is unstable.

This result is very useful for systems like the λ-repressor autoregulatory loop, as we saw in the
Lectures. It means that you do not have to calculate eigenvalues numerically, just plot the nullclines
and look at the geometry of their intersections. Unhappily, we do not have anything as nice as this
for more complex situations.
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