A Systems Approach to Biology

MCB 195

Lecture 4 Tuesday, 15 Feb 2005

Jeremy Gunawardena

LINEAR SYSTEMS

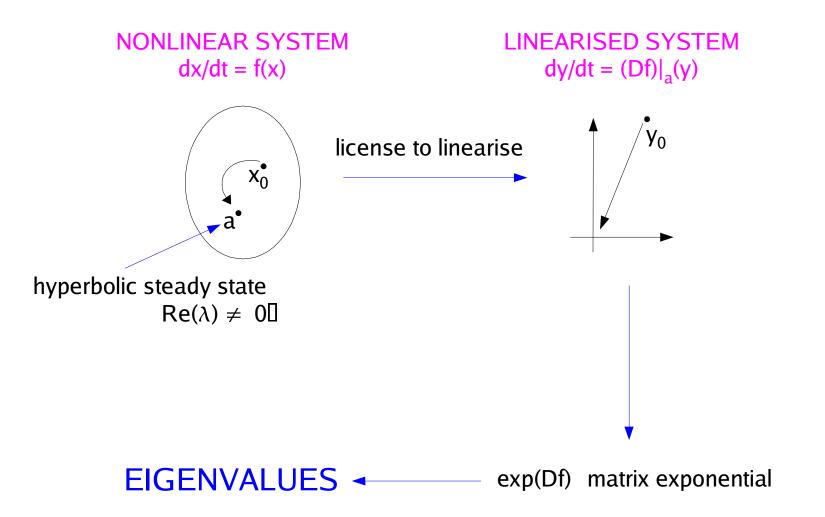
more about those dreaded *eigenvalues*

and then

BISTABILITY

Why do we need to know about eigenvalues?

Because they tell us what trajectories look like near a steady state



$$Au = \lambda u \quad u \neq 0$$

characteristic equation det (A - λ I) = 0

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$\lambda^{2} - (a + d)\lambda + (ad - bc) = 0$$

2 distinct real roots2 equal real roots2 complex conjugate roots $(\lambda - 1)(\lambda - 2) = 0$ $(\lambda - 1)^2 = 0$ $\lambda^2 + 1 = 0$

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{Ax}$$

if A has a real eigenvalue λ with eigenvector u

 $Au = \lambda u$

exp(At) has eigenvalue $exp(\lambda t)$ for the same eigenvector

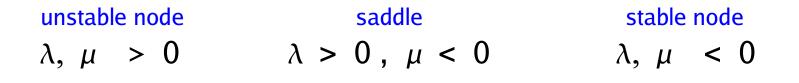
if the linear system is started anywhere along the line defined by u, it remains on that line and moves exponentially at rate λ

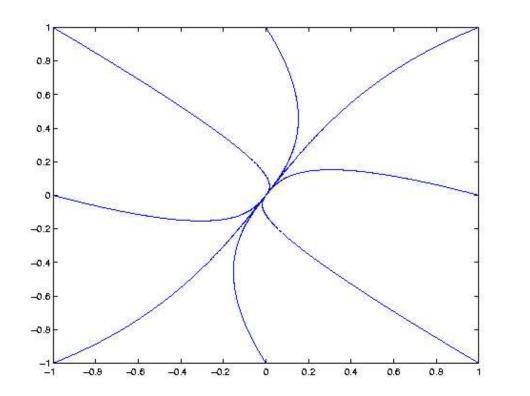
THE SIMPLE CASE

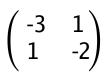
distinct real eigenvalues

$$\frac{dx}{dt} = Ax \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

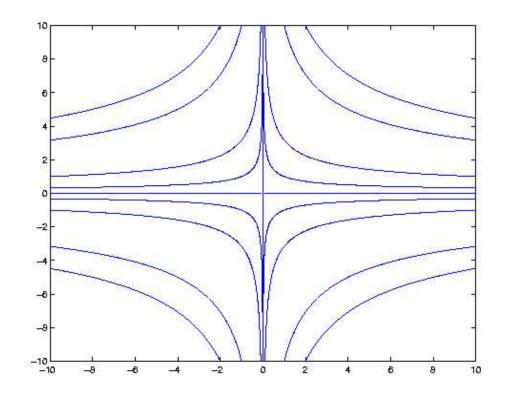
$$Au = \lambda u$$
 $Av = \mu v$

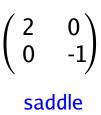






stable node

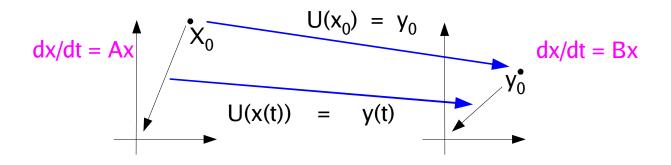




A and B are conjugate if there is an invertible matrix U such that $B = UAU^{-1}$

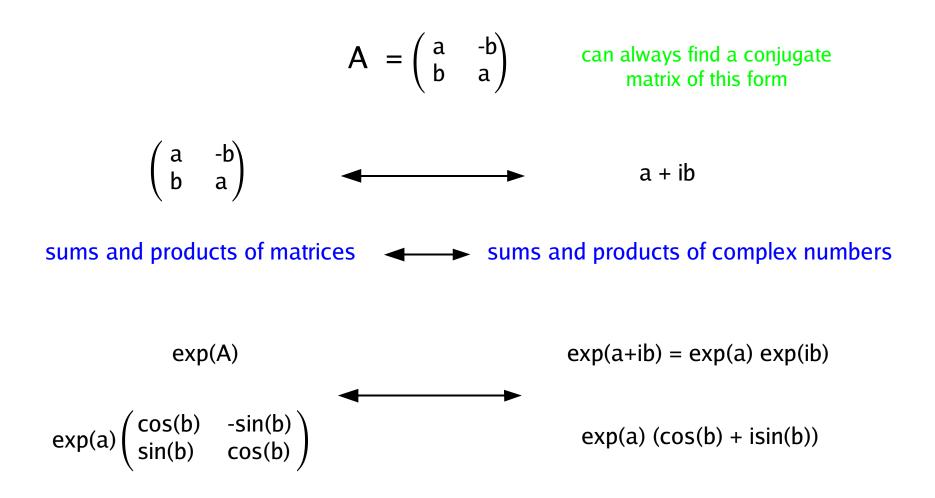
conjugate matrices have identical eigenvalues

conjugate matrices have identical dynamics

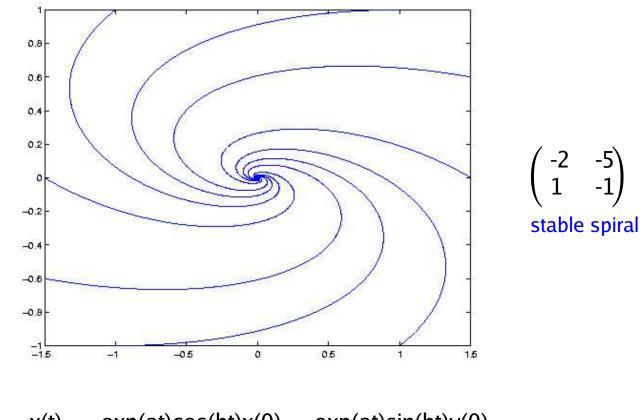


THE INTERESTING CASE

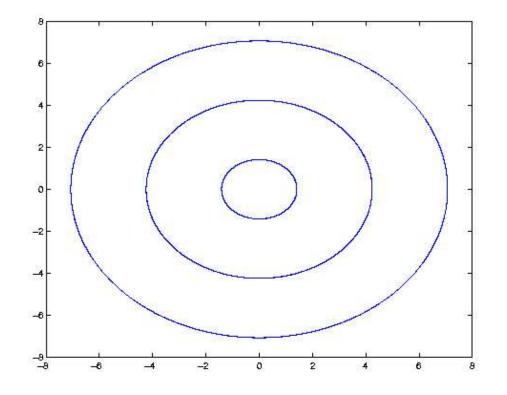
complex eigenvalues



complex eigenvalues imply SPIRALS or damped oscillations



 $\begin{aligned} x(t) &= \exp(at)\cos(bt)x(0) - \exp(at)\sin(bt)y(0) \\ y(t) &= \exp(at)\sin(bt)x(0) + \exp(at)\cos(bt)y(0) \end{aligned}$



THIS IS NON-HYPERBOLIC !!

THE AWKWARD CASE

equal real eigenvalues

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$

can always find a conjugate matrix of this form

$$\exp(A) = \exp(a) \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$

degenerate case which cant make up its mind whether to be a node or a spiral

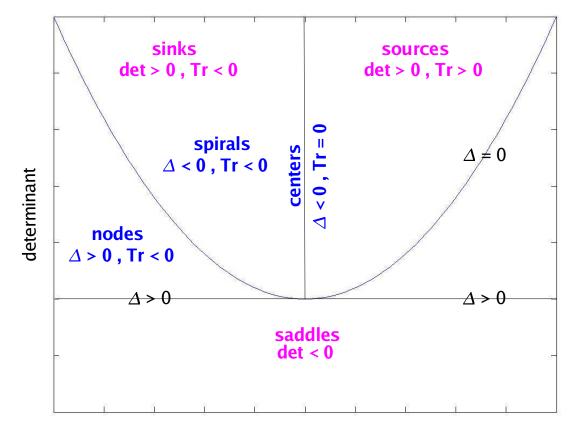
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\lambda^2 - (a + d)\lambda + (ad - bc) = 0$$
 $\lambda^2 - Tr(A)\lambda + det(A) = 0$

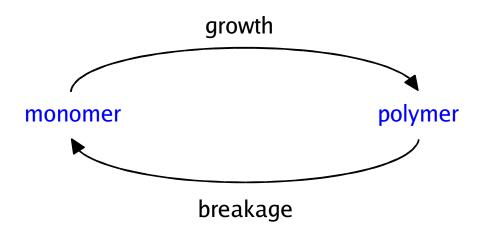
eigenvalues are
$$\lambda = \frac{\text{Tr}(A) \pm \{(\text{Tr}(A)^2 - 4 \text{ det}(A))\}^{1/2}}{2}$$

 $\Delta = Tr(A)^2 - 4det(A)$ **DISCRIMINANT**

$$\Delta > 0$$
 $\Delta = 0$ $\Delta < 0$
distinct real roots equal real roots complex roots

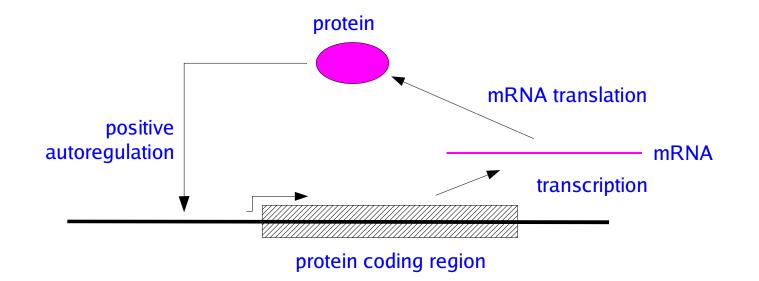


trace



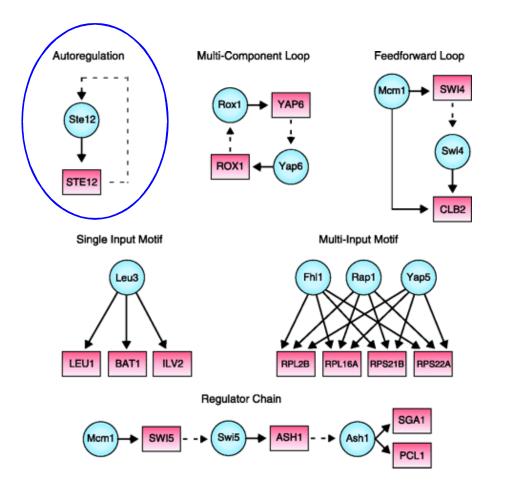
POSITIVE FEEDBACK

GENETIC AUTOREGULATORY LOOP



POSITIVE FEEDBACK

SIGNIFICANT REGULATORY MOTIF IN YEAST



Lee et al, *"Transcriptional regulatory networks in Saccharomyces cerevisiae"* Science **298**:799-804 2002

AND MORE COMPLEX ORGANISMS ...

Helms et al, *"Autoregulation and multiple enhancers control Math1 expression in the developing nervous system"*, Development **127**:1185-96 2000

x = protein concentration y = mRNA concentration

$$\frac{dx}{dt} = \lambda y - ax$$

$$\frac{dy}{dt} = \frac{\alpha x^c}{k + x^c} - by$$

(time)⁻¹ translation rate λ (time)⁻¹ protein degradation rate а $(mols)(time)^{-1}$ maximum gene expression rate α "Michaelis-Menten" constant (mols) k (time)⁻¹ mRNA dedgradation rate b cooperativity С