A Systems Approach to Biology

MCB 195

Lecture 3 Tuesday, 10 Feb 2005

Jeremy Gunawardena

DYNAMICAL SYSTEMS

steady states, stability

LINEAR SYSTEMS

$$\frac{dx}{dt} = \lambda - dx - \beta xy + bn(n-1)y$$

$$X_{1} = \lambda/d$$

$$\frac{dy}{dt} = -ay + b(z + y) - 2nby$$

$$X_{2} = \frac{(a + (n-1)b)(a + nb)}{b\beta}$$

$$\frac{dz}{dt} = \beta xy - az - n(n-1)by$$

$$S = a/b + 2n-1$$

$$X_{1} \le X_{2}$$

$$X_{1} > X_{2}$$

$$(X_{2}, (X_{1} - X_{2})(d/as), (X_{1} - X_{2})(d/a))$$

x 10⁴

1.5 ~

1.

0.5~

0 y 1000

800

changes in processes "outside" the system, like clearance or degradation, can have profound consequences on system behaviour through **BIFURCATIONS**

Nonlinear dynamical systems can be so complicated that we have given up on the search for explicit solutions

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = -rx - y - xz$$
$$\frac{dz}{dt} = xy - bz$$

CHAOS

sensitive dependence on initial conditions

Ed Lorentz (1972):

"Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?"

THE DYNAMICAL SYSTEMS PERSPECTIVE

comes to biology from mathematics and physics

this is not the only perspective on systems

in control theory, signal processing, etc systems are "input-output" systems

How do we work out the behaviour of a dynamical system?

3. determine the local **stability** of the steady states

stable any sufficiently small perturbation from the steady state always returns unstable not stable

1 dimensional dynamical system
$$\frac{dx}{dt} = f(x)$$

1. find a steady state
$$x = x_{st}$$
 $\left(\frac{dx}{dt}\right)_{x = x_{st}} =$

0

2. calculate
$$\left(\frac{df}{dx}\right)_{x = x_{st}}$$

3. if negative then
$$x_{st}$$
 is stable

- 4. if positive then x_{st} is unstable
- 5. **BUT** if zero then x_{st} could be stable or unstable

1 dimensional dynamical systems cannot oscillate

n dimensional dynamical system $\frac{dx}{dt} = f(x)$

1. find a steady state
$$x = x_{st}$$
 $\left(\frac{dx}{dt}\right)_{x = x_{st}} = 0$ so that $f(x_{st}) = 0$

2. calculate the Jacobian matrix at the steady state $A = (Df)_{x = x_{st}}$

- 3. if all the eigenvalues of A have negative real part then x_{st} is stable
- 4. if x_{st} is hyperbolic and at least one of the eigenvalues of A has positive real part then x_{st} is unstable

none of the eigenvalues of A has zero real part

$$\frac{dx}{dt} = \lambda - dx - \beta xy + bn(n-1)y$$
$$\frac{dy}{dt} = -ay + b(z+y) - 2nby$$
$$\begin{pmatrix} -d - \\ 0 \\ \beta y \\ \frac{dz}{dt} = \beta xy - az - n(n-1)by$$

$$\begin{pmatrix} -d - \beta y & -\beta x + n(n-1)b & 0 \\ 0 & -a - (2n-1)b & b \\ \beta y & \beta x - n(n-1)b & -a \end{pmatrix}$$

Hartman-Grobman Theorem

the behaviour of the trajectories close to a hyperbolic steady state are qualitatively similar to those of the linearised system

LINEAR DYNAMICAL SYSTEMS

$$\frac{dx}{dt} = ax \qquad 1 \text{ dimensional scalar equation}$$

solution is $x(t) = exp(at)x_0 \qquad exp(u) = 1 + u + u^2/2! + u^3/3! + \dots$

expm(U) in MATLAB

A and BAB⁻¹ have the same eigenvalues There are only 3 possibilities for a 2 x 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad Tr(A) = a + d \qquad det(A) = ad-bc \qquad \Delta = Tr(A) - 4det(A)^{2}$$

trace