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DYNAMICAL SYSTEMS
steady states, stability

LINEAR SYSTEMS
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changes in processes “outside” the system, like clearance or degradation, can have profound
consequences on system behaviour through BIFURCATIONS



Nonlinear dynamical systems can be so complicated that we
have given up on the search for explicit solutions
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sensitive dependence on initial conditions

Ed Lorentz (1972):
“Does the flap of a butterfly's wings in Brazil %’"ﬁ;“
set off a tornado in Texas?”
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THE DYNAMICAL SYSTEMS PERSPECTIVE

comes to biology from mathematics and physics

stochastic
state variables are
probability distributions
evolution described by
stochastic DEs

explict description of state

dlsc_r ete description of how the state
state variables are ..
Boolean evolves in time
evolution described by
logical functions spatial

state variables are functions
of space and time
evolution described by
PDEs

continuous
state variables are
functions of time
evolution described by
ODEs

this is not the only perspective on systems
in control theory, signal processing, etc systems are “input-output” systems



How do we work out the behaviour of a dynamical system?

3. determine the local stability of the steady states



1 dimensional dynamical system dx _ f(x)

dt
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1 dimensional dynamical system dx _ f(x)

1. find a steady state x = X (%)ti) = 0
X = X

2. calculate (g—f)
X X = Xg

3. if negative then x, is stable

4. if positive then xis unstable

5. BUT if zero then x_, could be stable or unstable

1 dimensional dynamical systems cannot oscillate



n dimensional dynamical system % = f(x)
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n dimensional dynamical system Ccll_)t( = f(x)

1. find a steady state x = x,, (%)ti) = 0 sothatf(x,) =0

X = Xg¢

2. calculate the Jacobian matrix at the steady state A = (Df), _ :
S

3. if all the eigenvalues of A have negative real part then x is stable

4. if x, ischyperbolioand at least one of the eigenvalues of A has
positive real part themn-x, is unstable
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dt

f(x,) =0

A= Dfyoy
dy _ A
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Hartman-Grobman Theorem

the behaviour of the trajectories close to a hyperbolic steady state
are qualitatively similar to those of the linearised system



LINEAR
DYNAMICAL SYSTEMS



dx

—_ = axX 1 dimensional scalar equation
dt
2
solutionis  x(t) = exp(at)x, expu)=1+u+u /2! + u3/3! +...
dx
i = AX n dimensional matrix equation

2 3
solutionis  x(t) = exp(Ab)x, exp(U)=1+U+U2'+U /31 +...

N\

identity matrix matrix product !!!



exp(U) is the matrix exponential expm(U) in MATLAB

for scalars a, b exp(a+b) = exp(a)exp(b)
for matrices A, B exp(A+B) = exp(A)exp(B) ONLY IF AB = BA
The behaviour of the linear dynamical system gd_)t(- = A

because

if y(0) = Bx(0) then y(t) = Bx(t)
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A and BAB ™ have the same eigenvalues

There are only 3 possibilities for a 2 x 2 matrix A = ( ?

Q o
N———

A BAB™ exp(BAB ™)
a -b cos(b) -sin(b)
2 complex conjugate eigenvalues b a exp(a) sin(b)  cos(b)
o _ a; 0 exp(a;) O
2 distinct real eigenvalues 0 a, 0  exp@a,)
. a b 1 b
2 equal real eigenvalues 0 2 exp@| o 1



determinant

3) TrA)=a+d  det(A) =ad-bc A =Tr(A) - 4det(A)°

sinks sources
’ det>0,Tr<0 det>0,Tr>0 .
L . | (=] n
spirals w1
A<0,Tr<0 & & AF0
B g o ]
VUl v
<
. nodes ]
A>0,Tr<0
A>0 A>0
saddles
- det <0 |

trace



