A Systems Approach to Biology

MCB 195

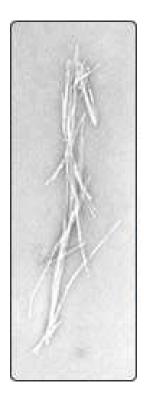
Lecture 2 Tuesday, 8 Feb 2005

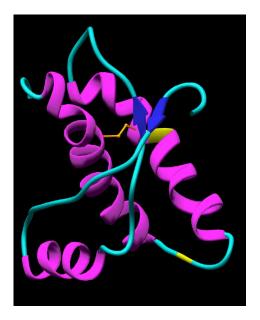
Jeremy Gunawardena

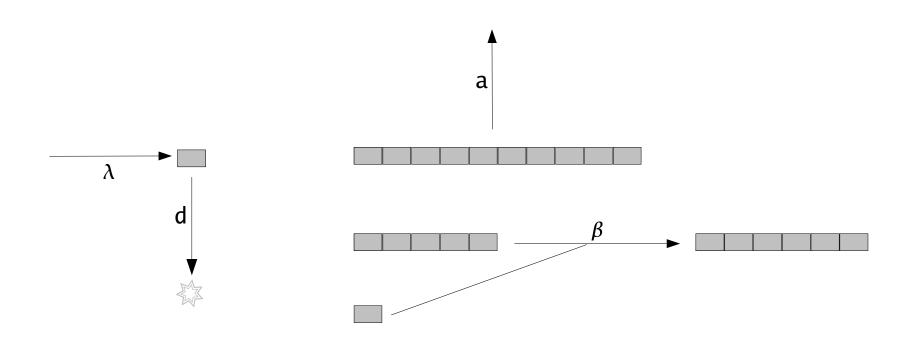
PRIONS CONTINUED

and then

DYNAMICAL SYSTEMS







monomer	rates	

- λ production (mols)(time)-1
- d degradation (time)-1

polymer rates

βaggregation(mols)-1(time)-1aclearance(time)-1

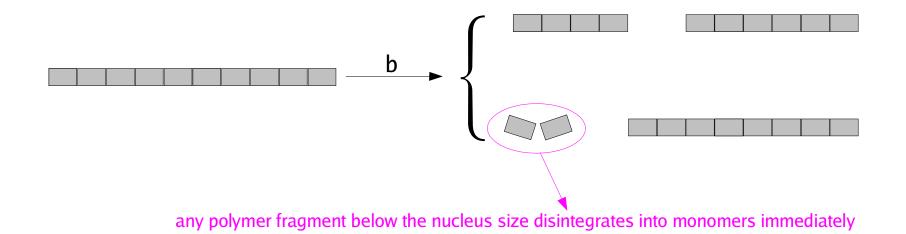
J Masel, V Jansen & M Nowak, "Quantifying the kinetic parameters of prion replication" Biophysical Chemistry 77:139-152 1999

- x amount of monomer
- y_i amount of polymer with i monomer units

$$\frac{dx}{dt} = \lambda - dx - \sum_{i=n}^{\infty} \beta x y_i$$

$$\frac{dy_i}{dt} = \beta x y_{i-1} - \beta x y_i - a y_i \quad \text{for } i \ge n$$

$$y_i = 0$$
 for $1 \le i < n$



polymer rates

b breakage (time)-1

$$\frac{dx}{dt} = \lambda - dx - \sum_{i=n}^{\infty} \beta x y_i + \sum_{i=n}^{\infty} \sum_{j=1}^{n-1} 2bjy_i$$

$$\frac{dy_i}{dt} = \beta x y_{i-1} - \beta x y_i - a y_i - (i-1) b y_i + \sum_{j=i+1}^{\infty} 2b y_j \text{ for } i \ge n$$

$$y_i = 0$$
 for $1 \leq i < n$

monomer rates

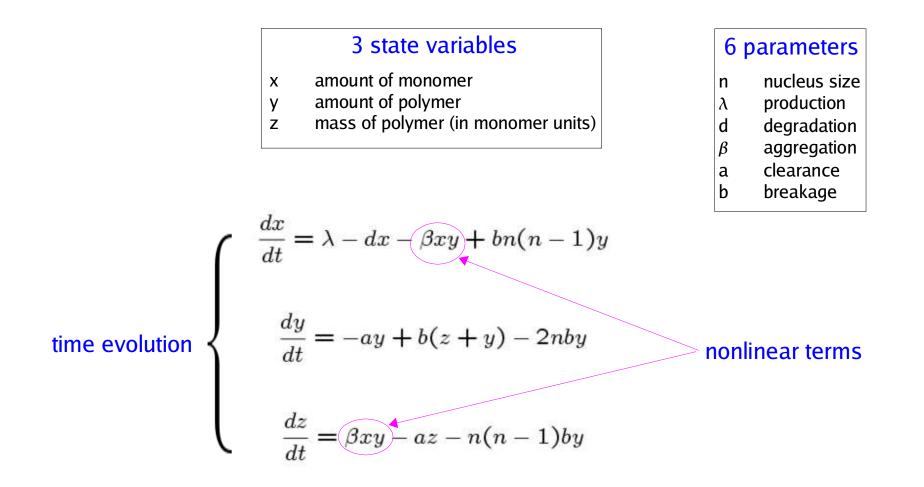
λ

d

polymer rates

- production (mols)(time)⁻¹ degradation (time)⁻¹
- n nucleus size

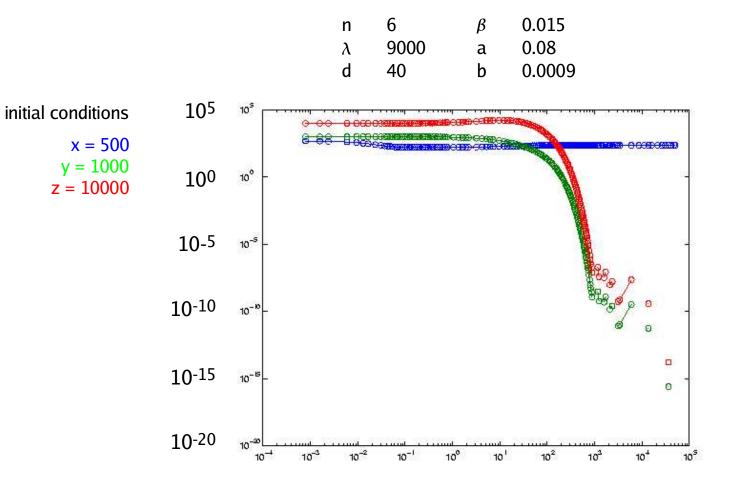
βaggregation(mols)-1(time)-1aclearance(time)-1bbreakage(time)-1



3 dimensional, nonlinear dynamical system

How do we work out the behaviour of this dynamical system?

1. choose reasonable parameter values and play with MATLAB



polymer disappears!

How do we work out the behaviour of this dynamical system?

2. determine the steady states, where

$$\frac{dx}{dt} = \frac{dy}{dt} = \frac{dz}{dt} = 0$$

$X_1 = \lambda/d$ depends only on monomer rates

$$X_2 = \frac{(a + (n-1)b)(a + nb)}{b\beta}$$
 depends only on polymer rates

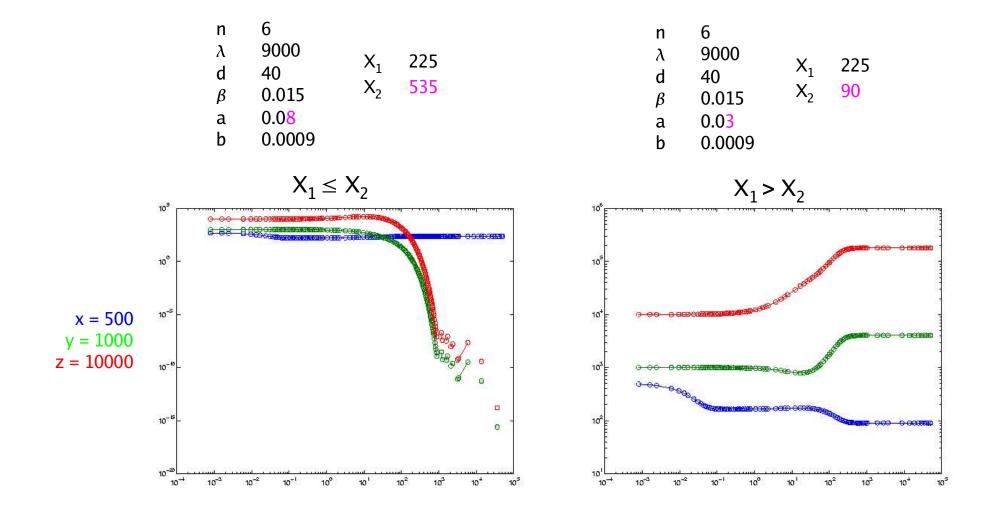
If $X_1 \le X_2$ there is 1 steady state

(X₁,0,0)

If $X_1 > X_2$ there are 2 steady states

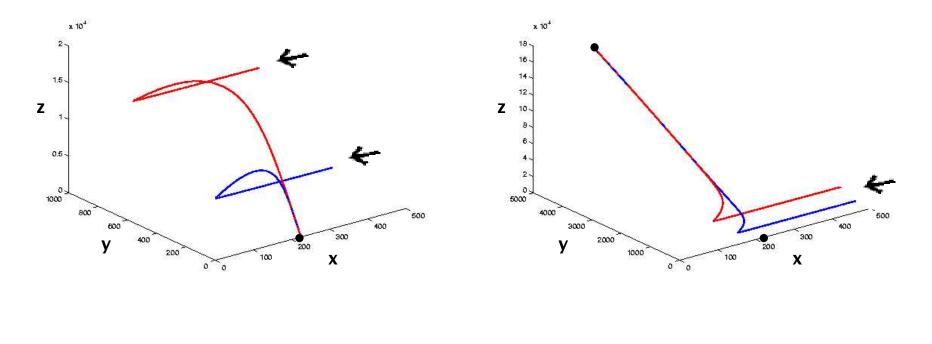
 $(X_1, 0, 0)$ and $(X_2, (X_1 - X_2)(d/as), (X_1 - X_2)(d/a))$

where s = a/b + 2n-1 is the average polymer length in the second steady state



BIFURCATION

a change in the qualitative ("topological") structure of steady states and trajectories as a result of changes in parameter values



$$a = 0.8$$
 \rightarrow $a = 0.3$

The moral of this story

changes in processes "outside" the system, like clearance or degradation, can have profound consequences on system behaviour

How do we work out the behaviour of this dynamical system?

3. determine the local **stability** of the steady states