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The Hill functions,Hh(x) = xh/(1 + xh), have been widely used in biology for over
a century but, with the exception of H1, they have had no justification other than as
a convenient fit to empirical data. Here, we show that they are the universal limit for
the sharpness of any input–output response arising from a Markov process model at
thermodynamic equilibrium. Models may represent arbitrary molecular complexity,
with multiple ligands, internal states, conformations, coregulators, etc, under core
assumptions that are detailed in the paper. The model output may be any linear
combination of steady-state probabilities, with components other than the chosen
input ligand held constant. This formulation generalizes most of the responses in the
literature. We use a coarse-graining method in the graph-theoretic linear framework to
show that two sharpness measures for input–output responses fall within an effectively
bounded region of the positive quadrant, 
m ⊂ (R+)2, for any equilibrium model
with m input binding sites. 
m exhibits a cusp which approaches, but never exceeds,
the sharpness of Hm, but the region and the cusp can be exceeded when models
are taken away from thermodynamic equilibrium. Such fundamental thermodynamic
limits are called Hopfield barriers, and our results provide a biophysical justification
for the Hill functions as the universal Hopfield barriers for sharpness. Our results
also introduce an object, 
m, whose structure may be of mathematical interest, and
suggest the importance of characterizing Hopfield barriers for other forms of cellular
information processing.

coarse-graining | Hill function | Hopfield barrier | linear framework | model assumptions

The Hopfield barrier for an information processing task is the fundamental upper bound
to how well that task can be implemented by a mechanism that operates at thermodynamic
equilibrium (1). The only way to exceed this barrier is by expending energy to maintain
a steady state away from thermodynamic equilibrium. The existence of such barriers was
first pointed out by John Hopfield in his pioneering work on kinetic proofreading for
reducing errors in biosynthetic processes like DNA replication (2). The broader principle
just outlined, applicable to any information processing task, is named in his honor (1).

In the present paper, we determine the universal Hopfield barrier for the sharpness
of steady-state input–output responses. Such responses have been widely used in bio-
chemistry, molecular biology, physiology, and pharmacology to quantitatively describe
the functional behavior of biological systems, such as receptors, ion channels, enzymes,
transporters, allosteric systems, signaling pathways, gene-regulatory systems, tissues, etc,
which interact with an input ligand to produce some output behavior; see SI Appendix,
Table S1. Sharpness, or ultrasensitivity, refers to the amount of output change for a given
change in the input, and is often measured by reference to the family of Hill functions,

Hh(x) =
xh

1 + xh
. [1]

Here, h > 0 is the Hill coefficient and x is the normalized concentration of the input
ligand. The Hill coefficient is frequently quoted as a measure of sharpness, with positive
sharpness corresponding to h > 1 and negative sharpness to h < 1. When h = 1,H1(x)
is the classical Michaelis–Menten input–output response (3), which is the baseline for the
absence of sharpness. Hill functions are also frequently used to represent input–output
responses in dynamical system models, where their sharpness underlies the emergence of
multiple steady states or limit cycle oscillations (4, 5).

Because Hill functions are so widely used, it is sometimes forgotten that they have
no mechanistic justification when h 6= 1 (6, 7). Unlike the Michaelis–Menten response
H1(x), which was originally derived to explain enzyme kinetics and has been found in
many other contexts (8), the Hill functions are merely a convenient family of rational
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functions which Archibald Vivian Hill selected to fit data on the
oxygen-binding response of hemoglobin (9). One of the main
results of this paper is to give a rigorous biophysical justification
for the Hill functions.

We provide an overview of our approach and results here before
explaining the technical details below. We specify input–output
responses using the linear framework, an approach to Markov
processes based on directed graphs with labeled edges (11, 12);
for up-to-date reviews, see refs. 13 and 14. In this approach,
graph vertices represent molecular states, directed edges represent
transitions and edge labels represent transition rates. Fig. 1A
shows a graph with a hypercube structure, denoted C2+1, which
represents the binding and unbinding of two ligands to three sites
on a biomolecule. We use structure to refer to vertices and edges
only, disregarding labels. Hypercube-structure graphs frequently
underlie models of input–output responses (15–18), including
several in SI Appendix, Table S1. Edge labels can include terms,
such as concentrations of binding ligands, that describe the
interaction between the graph and its environment (Fig. 1A).
The core assumptions about ligands are detailed below.

The linear framework allows the steady-state probabilities of
graph vertices to be calculated as rational algebraic functions
of the labels (Eq. 4). Importantly, this can be done whether
or not the steady state is one of thermodynamic equilibrium,
a property that is determined by the edge labels. An output
response can then be defined as a nonnegative linear combination
of the steady-state probabilities and considered as a function
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Fig. 1. Hypercube-structure graph, definition of position and steepness,
and position-steepness region. (A) Linear framework graph with the hyper-
cube structure,C2+1, representing the binding to a biomolecule of one ligand
(L, blue oval) to two sites and a second ligand (magenta square) to a third
site. Only two edge labels are shown for clarity, with the binding edge label
containing a term, [L], for the free concentration of ligand L. This graph could
describe a gene regulation system in which L is a transcription factor that
recruits RNA Polymerase to a promoter (1, 10). (B) Normalized input–output
responseq(y) (blue curve), where the normalization procedure for y , depicted
in gray font, ensures that q(1) = (M + m)/2 (Eq. 10). Steepness is defined
as the maximal unsigned slope of q(y), and position as the smallest value
of y for which the steepness is attained (Eq. 11). (C) Asymptotic (p, s) region
for the hypercube C4+1, obtained by random sampling of parameters over
increasing ranges until the boundary of the occupied region stabilizes (see
Inset in panel D). The input ligand binds at four sites, the output is the steady-
state probability of the fifth site being occupied by its ligand, and the graph
is at thermodynamic equilibrium. The region has been truncated to the left
and below to focus on the area of interest around the Hill line (blue), which
is the locus of (p, s) points for the Hill functions (Eq. 1), with the integer Hill
coefficients marked. (D) Expanded view of the region in panel C in the vicinity
of the cusp, showing the asymptotic stabilization as the parametric range
increases (see also SI Appendix, Figs. S4 and S5).

of the concentration of a chosen input ligand, with all other
concentrations kept constant (Eq. 5).

In previous work, we introduced two intrinsic, nondimen-
sional measures, position and steepness to quantify the sharpness
of such an input–output response (1), as described in Fig.
1B. By sampling parameter values appropriately, we plotted
the two-dimensional position-steepness, or (p, s), regions for
various input–output responses on hypercube-structure graphs
with different numbers of input binding sites, assuming the
corresponding systems were at thermodynamic equilibrium
(1, 10). Fig. 1C shows part of the (p, s) region for a hypercube-
structure graph similar to that in Fig. 1A but with four binding
sites for the input ligand.

We found that these (p, s) regions exhibit four characteristic
properties. First, the regions have an asymptotic boundary: if
the range over which the model parameters are sampled is
steadily increased, the boundary of the (p, s) region stabilizes (Fig.
1D), giving rise to the asymptotic boundary and the asymptotic
region (Fig. 1C ). Second, the boundary encloses a region that is
“effectively bounded” in the positive quadrant. The (p, s) region
is not bounded in the whole positive quadrant R+

× R+; there
are wings that become asymptotic to the axes. These wings are
not shown in Fig. 1C ; they are not the focus of this paper and
appear not to be biologically relevant. However, given a > 0, no
matter how small, that part of the (p, s) region which falls within
[a,∞)×[a,∞) is bounded, which is what we mean by “effectively
bounded.” Third, these (p, s) regions exhibit a cusp that falls on
the Hill line, the locus of (p, s) points for the Hill functions. The
tip of the cusp lies below the (p, s) point with Hill coefficient
equal to the number of input binding sites and approaches this
Hill point more closely as the parametric range increases (Fig.
1D). In other words, if the system has m binding sites for the
input ligand, the (p, s) point forHm acts as a barrier to sharpness.
Note the importance of using two sharpness measures to draw
this conclusion: each one of the measures can individually exceed
the corresponding value for Hm but they cannot both do so
simultaneously (Fig. 1C ). Fourth, parameter values can be found
away from thermodynamic equilibrium whose (p, s) points lie
above and to the right of the (p, s) point of Hm. This confirms
that Hm is the Hopfield barrier for sharpness of input–output
responses on hypercube-structure graphs like those in Fig. 1A.

Results of this kind already inform the interpretation of
experimental data. If the data fall outside the (p, s) region, then
no model of this kind can account for the data, no matter
what parameter values are chosen, and this can be asserted
without fitting the model to the data (10). Of course, it is
necessary to know the number of binding sites to draw this
conclusion. If that number is not known with certainty, the
result still provides a lower bound for the number of binding
sites that are needed to account for the data with a model
at thermodynamic equilibrium. However, the scope of such
conclusions is limited by the underlying hypercube structure.
Much greater molecular complexity may actually be present, such
as coregulators, conformations, internal states, modifications, etc.
(SI Appendix, Fig. S1). A different model will typically yield a
different (p, s) region (SI Appendix, Fig. S6) and this region may
be able to account for the data.

We will show here that this limitation may be overcome for
sharpness at thermodynamic equilibrium. We use a method of
coarse-graining in the linear framework to show that there is
a universal bounded region that contains the (p, s) point for
the input–output response of any Markov process model at
thermodynamic equilibrium and this region exhibits the same
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four properties described above. The model may be arbitrarily
complicated, subject to the core assumptions detailed below. In
particular, the Hill function emerges as the universal, model-
independent Hopfield barrier for sharpness.

Most studies in the biological literature focus on specific
models, and it is rare to be able to make a rigorous claim about
all models within a large and widely used class, such as the
Markov process models studied here. The universality that we
have uncovered for sharpness may potentially hold more widely
and suggests new directions to explore in the mathematics and
biophysics of cellular information processing (Discussion).

Results

Graphs, Markov Processes, and Input–Output Responses. The
linear framework was introduced in refs. 11 and 12 and reviewed
in refs. 13, 14, and 19; theMaterials andMethods and SI Appendix
provide more details. Under the reservoir assumptions defined
below, linear framework graphs are equivalent to finite-state,
continuous-time, time-homogeneous Markov processes that have
infinitesimal generators (12, Theorem 4). The graph specifies the
master equation of the Markov process (Materials and Methods,
Eq. 13), which is a linear differential equation from which the
framework acquires its name. Graph vertices represent the states
of the Markov process. There is an edge between two vertices
when the infinitesimal rate for this transition is positive, in which
case this positive rate becomes the edge label, with dimensions
of (time)−1. Vertices are typically denoted by 1, · · · , n, edges
by i → j, and labels by `(i → j). Edge labels can contain
terms that describe the interaction between the graph and its
environment (Fig. 1A). SI Appendix, Fig. S1 shows some of the
molecular complexity that may be accommodated within the
graph formalism. From now on, we will refer interchangeably to
graphs and their corresponding Markov processes.

The use of graphs to study Markov processes has its roots
in the pioneering work of Hill (20) and Schnakenberg (21).
It is rarely seen in the Markov process literature and has only
occasionally appeared in the biophysics literature (22), until
the development of the linear framework (23–26). The main
distinction in the linear framework approach is to treat the graph
as a mathematical object in its own right, in terms of which results
can be formulated, which, as we will see here, can accommodate
some of the molecular complexity found in biology.

We use “ligand” to refer to any component in the environment
that interacts with the graph through binding and unbinding,
like those represented by the blue oval and magenta square in
Fig. 1A. Depending on the context, such as gene regulation, a
ligand may be a transcription factor, an enzyme complex like
RNA Polymerase, a coregulator like Mediator, a nucleosome, etc
(27). Ligand binding is assumed to follow mass action and to be
first order, so that a binding edge label acquires a term for the
free ligand concentration (Fig. 1A). Ligands are assumed not to
engage in activities outside the graph, such as oligomerization;
such activities may be accommodated (28) but complicate the
arguments given here. Most importantly, ligands are assumed to
be present in sufficient quantity that binding does not appreciably
change their free concentration. This reservoir assumption, which
is implicitly made in all treatments of input–output responses,
is similar to the assumption in classical thermodynamics of a
heat bath, with which energy can be exchanged without altering
the temperature. First-order binding and reservoirs are the core
assumptions that underlie all the models and results of this paper;
they are commonly used in the literature, not always explicitly.

The linear framework enables the steady-state (s.s.) probability,
u∗i (G), of vertex i of graph G to be calculated as a rational
function of the edge labels (11, 12). Recall that G is strongly
connected if any two distinct vertices, i 6= j, are connected by
a directed path, i = i1 → i2 → · · · → ik = j. Provided G is
strongly connected, there is a unique s.s., which is described up to
a proportionality constant by the vector, �(G), with components,

�i(G) =
∑

T∈Φi(G)

∏
u→v∈T

`(u→ v) . [2]

Here, Φi(G) is the set of spanning trees of G that are rooted at
i. A spanning tree is a subgraph of G that includes every vertex
(spanning), has no cycles when edge directions are ignored (tree),
and has only one vertex with no outgoing edge (the root). The
s.s. probability is recovered from Eq. 2 by normalizing, as in
Eq. 4.

Eq. 2 shows that s.s. probabilities depend on all the edge labels
in the graph and are subject to a combinatorial explosion even for
relatively small graphs, which arises from having to enumerate
all spanning trees: the structure C4, for example, has 42,467,328
spanning trees rooted at each vertex (29). However, a substantial
simplification occurs if G can reach a s.s. of thermodynamic
equilibrium (t.e.). A graph G is at t.e. if two conditions are
satisfied. First, G is reversible, so that if i → j, then the reverse
transition, j→ i, is also present. Second, detailed balance holds,
so that any pair of reversible edges, i � j, is independently in
flux balance: u∗i (G)`(i→ j) = u∗j (G)`(j→ i). Reaching a s.s.
in which detailed balance holds is equivalent to the following
cycle condition on the labels of a reversible graph. Let P be any
path of reversible edges, P : i1 � i2 � · · · � ik, and let �(P)
denote the product of the label ratios along P,

�(P) =
(

`(i1 → i2)
`(i2 → i1)

)
· · ·

(
`(ik−1 → ik)
`(ik → ik−1)

)
. [3]

The cycle condition requires that �(P) = 1 whenever the path
is a cycle, with ik = i1. The quantity log�(P) is interpreted
in stochastic thermodynamics as the entropy generated along P
(30), so that t.e. corresponds to there being no entropy generation
over cycles in G.

At t.e., an alternative vector, �(G), may be used to calculate
s.s. probabilities. Choose a reference vertex, which we will index
as 1. In principle, this can be any vertex but it will be convenient
to choose one in which no input binding site is bound (Materials
and Methods). Now choose any path, Pi, of reversible edges from
1 to i; and let �i(G) = �(Pi). The cycle condition ensures that
this is well defined. The s.s. probability can then be determined
by normalizing,

u∗i (G) =
�i(G)

�1(G) + · · ·+ �n(G)
. [4]

This normalization can be done either with �(G) at t.e., as
shown in Eq. 4, or with �(G) in the general case. Either way, the
resulting expression is a rational function of the edge labels.

When G can reach t.e., the quantities log�i(G) can be
interpreted in terms of the free energy of vertex i relative to
the reference vertex 1. Eq. 4 then recovers the classical formula
of equilibrium statistical mechanics: the denominator is the
partition function for the grand canonical ensemble and the
terms �i(G) provide the Boltzmann factors. A key advantage of
the linear framework is that it reduces to equilibrium statistical
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mechanics at t.e. but it also enables s.s. probabilities to be exactly
calculated away from t.e. by using Eq. 2.

Input–output responses onG may now be defined by choosing
some ligand as input. We denote its concentration by x. We
assume that x is changed quasi-statically—in small increments
and sufficiently slowly that the graph relaxes back to a s.s. after
each change—which fits the conditions under which input–
output responses have been measured (SI Appendix, Table S1).
The concentrations of any other ligands are assumed to be held
constant. The output can be any nonnegative linear combination
of s.s. probabilities, considered as a function of x,

r(x) =
∑

1≤i≤n
�iu∗i (G) , 0 ≤ �i ≤ 1 . [5]

The restrictions ensure that r(x) is nondimensional and normal-
ized to lie in [0, 1]. It follows from Eqs. 2 and 4 that r(x) is a
rational function of x.

Coarse-Graining. In this section, we will show that if G is any
strongly connected, reversible graph that reaches t.e., and r(x)
is any input–output response on G, then r(x) can be rewritten
as an input–output response on some reversible substructure of
the hypercube Cm, where m is the number of input binding sites,
with edge labels that satisfy the cycle condition. This result begins
to explain how universality arises at t.e.: no matter how complex
the input–output response, it is mathematically equivalent to one
that involves only the binding and unbinding of the input ligand.
This rewriting requires finding edge labels for the substructure
of Cm, as well as the appropriate coefficients for its input–
output response. The coarse-graining strategy introduced in ref.
31 provides the necessary approach. We apply it here with further
details in theMaterials andMethods. To avoid trivial special cases,
we assume from now on that m > 1.

Let L be the input ligand and let �(G) denote the set of
vertices of G. Coarse-graining does not require G to satisfy the
cycle condition, although we will make this assumption later.
Coarse-graining starts from any partition of the vertices of G
into disjoint subsets and constructs a linear framework graph,
C(G), whose vertices are the subsets of the partition. We choose
the partition given by collecting together those vertices with the
same pattern of binding of L. Binding patterns are indexed by
subsets S ⊆ {1, · · · , m}. Let GS ⊆ �(G) contain those vertices
i ∈ �(G) such that, if s ∈ S, then L is bound at s in vertex i,
but if s 6∈ S, then L is not bound at s in vertex i. The vertex i
may have many other features as a vertex of G in addition to the
sites bound by L, but this coarse-graining ignores them. There
is an edge in C(G), w→C(G) z if, and only if, there is an edge
in G, i →G j, for some vertex i ∈ Gw and some vertex j ∈ Gz .
It follows that the vertices and edges of C(G) are those of the
hypercube structure Cm. But C(G) may not be all of Cm. This
can happen because of mutual exclusion (SI Appendix, Fig. S1B),
in which some vertices of Cm are not reached, or because of
ordering (SI Appendix, Fig. S1C ), in which some edges of Cm are
not used. Accordingly, the structure of C(G) is generally only a
substructure of Cm. Fig. 2 shows an example of coarse-graining
in which C(G) is all of C2.

It can be shown that labels may be assigned to the edges of
C(G) in essentially only one way (Materials andMethods, Eq. 14),
such that C(G) satisfies the cycle condition and the following
coarse-graining equation holds (31),

u∗w(C(G)) =
∑
i∈Gw

u∗i (G) . [6]

Fig. 2. Coarse-graining, showing only graph structures. On the Left, the
structure G, from Fig. 1A, is being coarse-grained, as described in the text,
with the blue oval as the input ligand L. The vertices of G are partitioned
into subsets (red, dashed ovals) corresponding to the patterns of binding of
L to m = 2 sites; the magenta square is ignored. The input binding sites are
indexed 1 and 2 from left to right and the subsets of sites are indexed in
set notation ∅, {1}, {2}, {1,2}. The resulting coarse-grained structure, C(G), is
shown on the Right, with vertices indexed by the corresponding subsets. In
this case, the full structure of the hypercube C2 is recovered. The edges and
labels of C(G) are explained in the text and SI Appendix.

Eq. 6 is what would be expected from a coarse-graining at s.s.
Eq. 5 may now be rewritten as,

r(x) =
∑

S∈�(C(G))

∑
i∈GS

�i�i

 u∗S(C(G)) , [7]

where �i can be seen from Eq. 6 as the s.s. probability of i
conditioned on the subset GS ⊆ �(G),

�i =
u∗i (G)∑

j∈GS
u∗j (G)

. [8]

The terms �i may be extremely complicated in general, as they
summarize the other features that are present inG. The key point,
however, is that if G does satisfy the cycle condition, then the
�i do not depend on x (Materials and Methods). It follows that,
provided that G satisfies the cycle condition, Eq. 7 expresses r(x)
as a valid input–output response on a graph that is a substructure
of Cm, as claimed above. Let us call this graph Gm.

A universal (p, s) region can now be generated by sampling
not only the labels of Gm but also the coefficients �i (Eq. 5)
that appear in the input–output responses on Gm. However,
a further simplification arises because r(x) has the following
rational structure (Materials and Methods),

r(x) =
�0 + �1x + · · ·+ �lxl

�0 + �1x + · · ·+ �lxl
, [9]

where l is the maximum number of sites bound by L, so that 1 ≤
l ≤ m; the denominator coefficients are all positive, 0 < �i; and
the numerator coefficients are nonnegative and not greater than
the corresponding coefficients in the denominator, 0 ≤ �i ≤ �i.
It can be shown that any choice of �i and �i that satisfies these
conditions corresponds to an equilibrium input–output response
(SI Appendix), so that Eq. 9 exactly describes the equilibrium
input–output responses of Markov process systems with m input
binding sites.

Eq.9 shows that the rational structure of an equilibrium input–
output response is largely independent of the graphG from which
it is derived. G determines the coefficients, �i, �i, but the degree
in x of the denominator of r(x), namely l , depends only on the
maximum number of sites bound by the input, irrespective of the
complexity of G. The rational structure of Eq. 9 is a preliminary
mathematical expression of the universal Hopfield barrier and is
the basis for analyzing sharpness below.
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The nondependence of �i on x, which is crucial for the
structure of r(x) described in Eq. 9, breaks down emphatically
if G does not satisfy the cycle condition. The resulting r(x) can
then no longer be an input–output response on some substructure
of Cm. The algebraic structure of nonequilibrium input–output
responses is strikingly different, as we will see below.

Intrinsic Measures of Sharpness. To define measures of sharp-
ness, it is necessary to normalize the input–output response.
The output value is normalized already in the light of Eq. 5.
Since there is no naturally independent quantity against which
to normalize the input concentration, x, its normalization has
to be intrinsically determined for each response. The input–
output responses allowed by Eq. 9 can be nonmonotonic and
complicated (Fig. 1B). Accordingly, we choose the normalization
value, denoted x0.5, to be the smallest positive value of x at which
the response is halfway between its supremum and its infimum,
which exist because 0 ≤ r(x) ≤ 1. More precisely, we define
(Fig. 1B and SI Appendix, Fig. S2),

m(r) = inf
x∈[0,∞)

r(x) , M(r) = sup
x∈[0,∞)

r(x)

x0.5 = inf
x∈(0,∞)

{
x
∣∣∣∣ r(x) =

m(r) + M(r)
2

}
.

[10]

We explicitly choose x0.5 > 0. This can always be done because,
even if r(0) = (m(r)+M(r))/2, there must be x > 0 for which
r(x) has the same value. The normalized response, q(y), where
y = x/x0.5, is then defined by q(y) = r(yx0.5). Note that x0.5
depends on r.

Following normalization, the two intrinsic measures of sharp-
ness are the supremum of the absolute value of the derivative of
q(y), which we call steepness and denote s(r), and the smallest
y value that attains the supremum, which we call position and
denote p(r). The supremum is attained at a finite value of y (SI
Appendix), so that,

s(r) = max
y∈[0,∞)

∣∣∣∣dqdy
∣∣∣∣ , p(r) = min

y∈[0,∞)
argmax

∣∣∣∣dqdy
∣∣∣∣ . [11]

Because of the dependence of x0.5 on r, position and steepness are
scale invariant: p(r(cx)) = p(r) and s(r(cx)) = s(r), for any scale
factor c > 0. If we denote by su(r) and pu(r) the unnormalized
versions of steepness and position, obtained using dr/dx in place
of dq/dy in Eq. 11, then the relationship between the normalized
and unnormalized versions is given by a complementary scaling
by x0.5: the steepness is multiplied and the position is divided,

s(r) = su(r)x0.5 , p(r) =
pu(r)
x0.5

. [12]

This relationship will be helpful to interpret (p, s) regions below.

Universal Position-Steepness Region and the Hopfield Barrier.
We elaborated the techniques previously introduced to estimate
(p, s) regions like that in Fig. 1C (1, 10, 32) to plot the universal
(p, s) region, Ωm, for input–output responses at t.e. with m input
binding sites (Fig. 3A). The coefficients in Eq. 9were sampled for
l = m; the (p, s) points of the corresponding rational functions
were plotted; and the resulting region was grown by biasing the
sampling and expanding the parametric range so as to establish
the asymptotic boundary. The algorithm is summarized in the
Materials and Methods with further details in SI Appendix.

A

B C

Fig. 3. Universal position-steepness region and the Hopfield barrier. (A) Uni-
versal asymptotic (p, s) region,Ω4 (gray area), for thermodynamic equilibrium
models with m = 4 binding sites for the input ligand, with the Hill line
shown as in Fig. 1C. The magnified view in the inset shows the cusp lying
on the Hill line just below the (p, s) point for H4. (B) Expanded view of the
cusp showing (p, s) points lying outside the universal region (black dots) for
rational functions which do not satisfy the coefficient condition, �i ≤ �i , for
Eq. 9. Only points outside Ω4 are shown for clarity. (C) Expanded view of the
cusp showing (p, s) points lying outside the universal region for the graph
with the hypercube structure C4, output given by fractional saturation and
parameter values chosen away from thermodynamic equilibrium. The red
points beyond the dashed lines exceed H4 in both position and steepness
and confirm that the Hill functionH4 is the Hopfield barrier for the sharpness
of models with m = 4 input binding sites. Only points outside Ω4 are shown
for clarity.

Fig. 3A shows Ω4 with confirmation of the asymptotic
boundary shown in SI Appendix, Fig. S4. The asymptotic
boundary of Ω6 is shown in SI Appendix, Fig. S5. These universal
regions have the same characteristic properties satisfied by the
C4+1 model in Fig. 1C, as described previously. First, the regions
have an asymptotic boundary. Second, the regions are effectively
bounded in the positive quadrant. The wings that asymptote to
the axes are more visible in Fig. 3A. Third,Ωm has a cusp that falls
on the Hill line and lies just below the (p, s) point of Hm (Fig. 3
A, Inset). During asymptotic convergence, the cusp approaches
increasingly close to the (p, s) point ofHm as the parametric range
is increased (SI Appendix, Figs. S4 and S5). As before, the Hill
function acts as a sharpness barrier at t.e.: while there are input–
output responses with either higher position or higher steepness
than Hm, there are none with both higher position and higher
steepness.
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The coefficient constraints for Eq. 9, which characterize
equilibrium input–output responses (SI Appendix), are required
for these properties of Ωm. If rational functions are permitted
which do not obey the constraints, then (p, s) points can be found
that lie outside the universal region (Fig. 3B). This confirms
that the asymptotic region arises only for equilibrium input–
output responses. As a further check on the universality of Ωm,
we calculated the (p, s) regions for six specific models with m = 4
input binding sites and found them all to be contained within
Ω4, as expected (SI Appendix, Fig. S6). Details of the models are
given in SI Appendix.

The situation is profoundly different away from t.e., as
mentioned previously. We considered the graph with hypercube
structure C4 and the input–output response given by fractional
saturation, which is the average number of bound inputs
normalized to the total number of input binding sites (here 4).
When edge labels are allowed to be away from t.e., we readily
found (p, s) points that lie outside Ω4 (Fig. 3C ). In particular, we
found (p, s) points that are greater in both position and steepness
than those of H4 (Fig. 3C, red points), thereby confirming that
H4 is the universal Hopfield barrier for sharpness of input–
output responses with m = 4 input binding sites. There is
nothing special about the structure C4: other graph structures
with m = 4, such as those in SI Appendix, Fig. S6, can yield (p, s)
points lying outside Ω4 and exceeding H4 in both position and
steepness, when edge labels are allowed to be away from t.e.

The tapering wings of Ωm (Fig. 3A) can be understood as fol-
lows. Recall the unnormalized versions of steepness and position,
su(r) and pu(r), which satisfy Eq. 12. We can distinguish two
extreme cases, when pu(r) � x0.5, so that p(r) = pu(r)/x0.5
is small, while s(r) = su(r)x0.5 can become large, or when
x0.5 � pu(r), so that p(r) is large, while s(r) can become small.
Input–output responses that satisfy these conditions appear not
to be biologically meaningful.

Failure of Universality Away From Thermodynamic Equilib-
rium. As discussed above, the universality of Ωm breaks down
completely away from t.e. This strikingly different behavior may
be understood in terms of the difference between the vectors
�(G) at t.e. (defined through Eq. 3) and �(G) away from t.e.
(Eq. 2), in terms of which s.s. probabilities are calculated by
normalizing (Eq. 4). For a given vertex i ∈ �(G), �i(G) = �(P),
where P is a path from 1 to i, with the cycle condition ensuring
that this value is independent of the chosen path. It is this
property of path independence that ultimately shows, through
coarse-graining, that the degree of x in �i(G) is given simply by
the number of input binding sites that are bound by the input
in vertex i (Materials and Methods). This degree is essentially
independent of the structure of the graph G. It then readily
follows that the rational structure of input–output responses
at t.e., as described in Eq. 9, is also essentially independent
of G.

Away from t.e., however, we must use �(G), rather than �(G),
to calculate s.s. probabilities. An input–output response is still a
rational function of x but, as Eq. 2makes clear, �i(G) depends on
all spanning trees rooted at i. In consequence, the degree of x in
�i(G) now depends crucially on the structure of G and becomes
unrelated to the number of bound sites in i (SI Appendix). For
hypercube graphs of structure Cm, input–output responses away
from t.e. have degree 2m − 1 in x (1) and can therefore have
substantially higher sharpness than responses at t.e. (25). It is
this marked difference in rational structure that underlies Fig.
3C and explains the failure of universality away from t.e.

Very little is known about the shape of (p, s) regions away
from t.e., which, as just explained, are now model dependent.
Numerical estimation of regions beyond quite small graphs is
hampered in part by the combinatorial intractability of Eq. 2.
What little evidence there is ref. 1 suggests that nonequilibrium
(p, s) regions also have a cusp on the Hill line, just below the
(p, s) point for Hz where z is an integer. However, it is an open
problem to understand how z depends on the underlying graph.

Discussion

We have provided here a rigorous biophysical justification for
the Hill functions. As pointed out previously, they have been
widely exploited in biology for over a century, for both data
fitting and modeling. Yet, they have been nothing other than
a convenient family of rational functions. We have shown by
numerical calculations for m = 4 (Fig. 3) and m = 6 (SI
Appendix) that Hill functions with integer Hill coefficients are
the universal Hopfield barriers for sharpness of input–output
responses: given any Markov process model withm input binding
sites at t.e., no matter how complicated, the sharpness of any
input–output response (Eq. 5) lies within the universal, model-
independent (p, s) region Ωm, and cannot be higher in both
position and steepness than that of the Hill function Hm (Fig.
3A). In contrast, if any such graph is away from t.e., then input–
output responses can be found whose position and steepness
both exceed those of Hm (Fig. 3C ). A. V. Hill could not have
anticipated, at the time he introduced his eponymous functions
(9), their deep connection to thermodynamics.

Our numerical results strongly suggest that the conclusions
described above hold for all values of m, and it remains an
open problem to give a mathematical proof of this. Considerable
subtlety arises because of the shape of Ωm. It is not true in general
that the position or steepness of an input–output response is less
than the position or steepness, respectively, of Hm but both
assertions become true within the cusp (Fig. 3). Position and
steepness become increasingly tightly constrained within the cusp
so as to asymptotically fall on the Hill line itself. The precise
nature of this changing constraint is not yet understood, and this
appears to be one of the main barriers to a proof.

The winged, cuspidal shape of Ωm (Fig. 3A) is particularly
tantalizing. Its universality suggests that it may have some deeper
mathematical significance that has yet to be understood. Perhaps
this may encourage mathematicians to examine more closely
a mathematical object that has emerged directly from biology.
There remains much work to be done, as noted above, to
understand the sharpness regions of input–output responses
away from t.e. Another important question arises in moving
beyond the reservoir assumptions made here. Biological ligands
are always present in limited amounts and may be engaged in
other activities beyond the system of interest. Such issues have
been largely ignored in the literature but evidence is emerging as
to the consequences of doing so (33, 34). Ligand limitation and
distraction can be accommodated within the linear framework
(28) but the resulting input–output responses begin to stray
outside the elegant confines of rational functions.

Our results illustrate the significance of Hopfield’s insights
into energy expenditure, as first put forward for biosynthetic
error correction (2) and then elaborated, as explained previously,
for any form of information processing (1). No matter what
information processing task is being undertaken, there is a
fundamental limit—the Hopfield barrier—to how well it can
be carried out at t.e. The limit is set by fundamental physics,
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in effect by the cycle condition. Energy expenditure has been
widely studied in areas like pattern formation, force generation,
and active matter (35, 36), but its role in information processing
has been more elusive. This may reflect the fact that, in areas
other than information processing, the relevant Hopfield barriers
are zero: for example, directed movement is impossible at t.e.
Information processing, in contrast, can certainly occur at t.e.,
even though, as Hopfield recognized, evolution has bypassed the
Hopfield barriers.

We believe the time is now ripe to analyze in more depth the
functional impact of energy expenditure in cellular information
processing. Previous studies have suggested putative Hopfield
barriers (23, 37–39) and there is now growing evidence for the
significance of nonequilibrium functionality in gene regulation
(10, 28, 40, 41). Much insight could be gained by characterizing
the Hopfield barriers for the various information processing tasks
undertaken by cells, as we have done here for the sharpness of
input–output responses. Such a research programme may not
only bring to light some of the general principles at work in biol-
ogy but may also reveal further objects of mathematical interest.
Moreover, the method of coarse-graining used here, which is
generally applicable, leads us to ask whether similar universality
and model independence may also be found for other Hopfield
barriers. We hope the results of the present paper will stimulate
further studies of Hopfield barriers in cellular information
processing.

Materials and Methods

Master Equation and Eq. 2. A linear framework graph, G, gives rise to a linear
dynamics as follows: each edge may be thought of as a chemical reaction under
mass-action kinetics with the edge label as the rate constant. Since an edge has
only a single source vertex, the dynamics must be linear. It may be written in
matrix form as

du(t)
dt

= L(G) · u(t) , [13]

whereu(t) is the vector of vertex probabilities at time t andL(G) is the Laplacian
matrix of G (42). Under reservoir assumptions, Eq. 13 is the master equation of
the corresponding Markov process (12, Theorem 4). A s.s. of Eq. 13 must lie in
the kernel ofL(G), which is one-dimensional whenG is strongly connected. The
canonical basis element�(G) ∈ kerL(G) is calculated by using the Matrix-Tree
theorem of graph theory, which relates the minors of L(G) to spanning trees
of G. This gives Eq. 2, from which the s.s. can be calculated by normalizing to
remove the proportionality constant, as in Eq. 4.

Coarse-Graining. This method was introduced in ref. 31. Let G be any strongly
connected, reversible graph. Choose any partition of the vertices into disjoint
subsets: �(G) = G1 ∪ · · · ∪ Gs and Gw ∩ Gz = ∅ when w 6= z. A coarse-
grained graph, C(G), is constructed on the vertices 1, · · · , s, corresponding to
the subsets of the partition. There is an edge w→C(G) z if, and only if, there is
an edge i→G j for some vertex i ∈ Gw and some vertex j ∈ Gz . C(G) thereby
inherits reversibility from G. The edge labels on C(G) are given by

`(w→C(G) z) = Q

∑
j∈Gz

�j(G)

 , [14]

where �(G) is the vector defined in Eq. 2. The quantity Q in Eq. 14 is chosen
to ensure that the labels have dimensions of (time)−1, but its actual value is
irrelevant because, with these labels, C(G) satisfies the cycle condition, even
when G does not. Hence, as far as s.s. probabilities of C(G) are concerned, only
the label ratios are relevant (Eq. 4), so that Q cancels out. The key point is that,
with the labeling in Eq. 14, the coarse-graining formula in Eq. 6 holds. The
choice of labels in Eq. 14 is essentially unique if C(G) has to satisfy the cycle
condition and Eq. 6 has to hold. Note that this coarse-graining is only at s.s. and
nothing is implied about the dynamics of C(G).

Rational Structure and Eqs. 8 and 9. The independence of �i in Eq. 8 from x
arises because, if j ∈ GS , then �j(G) = jx|S|, where |S| is the size of S, or the
number of input binding sites that are bound by the input, andj is independent
of x. To see this, recall that the reference vertex, 1, in G was chosen to be a state
in which no input ligand is bound. Take any path, P, of reversible edges from 1
to j, P : 1 = i1 � · · ·� ik = j. It follows from the definition of�(P) in Eq.3
that traversing P from i1 to ik , forward edges may be encountered at which the
input binds, which each contribute a factor x to�(P), as well as forward edges at
which the input unbinds, which each contribute a factor x−1 to �(P). Since no
ligand is bound in i1 = 1 and j ∈ GS has |S| input binding sites, the net effect
of the bindings and unbindings along P must be to contribute exactly x|S| to
�(P). ProvidedG satisfies the cycle condition,�(P) is independent of the choice
of P. Hence, �j(G) = �(P) = jx|S|, where j does not depend on x. It then
follows that x occurs to the same degree in both the numerator and each term
of the denominator of Eq. 8, so that it cancels out and �i is independent of x, as
claimed.

The denominator of u∗i in Eq.4 is now a polynomial in x of degree l, where l is
the maximum number of input binding sites that are bound by the input ligand.
Also, every degree less than l must occur in the denominator, since states are
formed by successive binding of the input ligand. Hence, from Eq. 5, r(x) is a
rational function whose denominator polynomial is of degree l in x, as shown in
Eq. 9, with �i > 0 for 0 ≤ i ≤ l. Since the numerator of u∗j in Eq. 4 is always
part of the denominator, it follows from Eq. 5 that 0 ≤ �i ≤ �i.

Determination of the Universal (p, s) Region in Fig. 3A. Parameters are
sampled as follows. Eq. 9 has 2(m + 1) parameters (coefficients) for graphs
at t.e. with m input binding sites. The denominator parameters, �i, are
sampled by choosing log10 �i uniformly at random in the interval [−a, a],
for a fixed exponent range a. Having chosen the �i, the logarithm of the
numerator parameters, log10 �i, are sampled uniformly at random in the interval
[−a, log10 �i], to satisfy the constraints in Eq. 9. As previously found (10), the
boundary of the (p, s) region stabilizes rapidly as a is increased (SI Appendix,
Fig. S4) to give an asymptotic boundary.

Boundaries are estimated as follows. The two-dimensional (p, s) space is
divided into a grid of small square cells of side length 0.005. The current
working boundary is defined by those cells which contain sampled (p, s) points
but which have only empty cells above or below in the same column or to the
left or right in the same row. The working boundary is then recomputed in
two phases. First, each of the sampled parameter sets that yield (p, s) points
on the working boundary is repeatedly “mutated” by randomly choosing new
parameter values near the sampled value, independently for each parameter,
until a parameter set is found whose (p, s) point goes into an empty cell.
This may generate a new working boundary. Second, for each sampled (p, s)
point on the resulting boundary, a target point is determined that lies outside
the boundary and repeated mutations are attempted, as before, to reduce the
distance in (p, s) space to this target point. This second phase is important to
avoid becoming trapped in deep valleys during the first phase. The algorithm is
considered to converge when no new boundary cells are created after a number
of iterations that is specified as a hyperparameter; we took it to be 1,500.

Data, Materials, and Software Availability. Source codes have been de-
posited in Zenodo (43–45).
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