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SUMMARY

The quantitative concepts used to reason about
gene regulation largely derive from bacterial studies.
We show that this bacterial paradigm cannot explain
the sharp expression of a canonical developmental
gene in response to a regulating transcription factor
(TF). In the absence of energy expenditure, with reg-
ulatory DNA at thermodynamic equilibrium, informa-
tion integration across multiple TF binding sites can
generate the required sharpness, but with strong
constraints on the resultant ‘‘higher-order coopera-
tivities.’’ Even with such integration, there is a ‘‘Hop-
field barrier’’ to sharpness; for n TF binding sites, this
barrier is represented by the Hill function with the Hill
coefficient n. If, however, energy is expended to
maintain regulatory DNA away from thermodynamic
equilibrium, as in kinetic proofreading, this barrier
can be breached and greater sharpness achieved.
Our approach is grounded in fundamental physics,
leads to testable experimental predictions, and sug-
gests how a quantitative paradigm for eukaryotic
gene regulation can be formulated.

INTRODUCTION

The molecular machinery which transcribes DNA into RNA is

general purpose. Deciding which gene to transcribe requires

regulatory DNA sequence information, which is interpreted by

sequence-specific, DNA-binding transcription factors (TFs).

Quantitative measurements of TF-DNA and TF-TF interactions

in bacteria (Ptashne, 2004), together with analysis of the under-

lying physics (Ackers et al., 1982), have introduced fundamental

quantitative concepts like ‘‘affinity’’ and ‘‘cooperativity’’ to

explain the regulated recruitment of RNA polymerase to a

gene. This bacterial paradigm has been widely used to interpret

experimental results even outside the bacterial domain. How-

ever, eukaryotic transcription differs considerably from bacterial

transcription; as a result, this raises the question of whether the

bacterial paradigm is sufficient to explain how eukaryotic genes

are regulated.

Bacterial TF sequence motifs have an average length of 16

base pairs, and those in eukaryotes are only half as long (Wun-

derlich and Mirny, 2009), suggesting that eukaryotes depend
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on combinatorial integration of many small packets of informa-

tion. Such information integrationmight be implemented through

nucleosomes or by multi-protein co-regulators, such as Medi-

ator or CBP/p300, that make multiple contacts between TFs

and the transcriptional machinery (Spitz and Furlong, 2012).

Also, while bacterial gene regulation appears not to require en-

ergy from donors like ATP, making it reasonable to assume

that it takes place at thermodynamic equilibrium, eukaryotic

gene regulation depends on energy expenditure to reorganize

chromatin, displace nucleosomes, post-translationally modify

regulatory proteins, andmethylate DNA. This qualitative appreci-

ation of eukaryotic complexity has been difficult to translate into

rigorous, well-defined concepts and new kinds of experiments

that can explain the role of these molecular mechanisms in

gene regulation.

Quantitative models grounded in physics could fill this critical

gap. The physics-based ‘‘thermodynamic formalism’’ developed

for bacteria assumes that regulation takes place at thermody-

namic equilibrium. This formalism has been codified (Bintu

et al., 2005) and applied to gene regulation in Drosophila, yeast,

and human cells (Segal and Widom, 2009; Sherman and Cohen,

2012). However, the molecular complexity found in eukaryotes,

especially the complexity that implements the information inte-

gration and energy expenditure described above, has not been

incorporated into these models.

Questions about the sufficiency of the bacterial paradigm have

been accumulating (Coulon et al., 2013), but the absence of a

compelling example and the lack of appropriate concepts

make it easy to fall back on what is familiar. Here, we present a

compelling example of insufficiency and introduce appropriate

quantitative concepts, rigorously based on the underlying phys-

ics, with which to reason about eukaryotic gene regulation.

We bring together three ingredients that exemplify a general

approach to the problem. First, we focus on a property of gene

regulation that can be described quantitatively; second, we iden-

tify a biological system in which that property has been

measured; and, third, we exploit a mathematical framework

that allows us to analyze both equilibrium and non-equilibrium

systems.

The quantitative property on which we focus is the sharpness

of gene expression in response to a TF, or the extent to which a

small change in TF concentration can lead to a larger change in

gene expression. Sharpness has been investigated in several

biological systems, but is particularly evident in developmental

patterning. The zygotic gap gene hunchback (hb) is expressed

in an anterior region of the early Drosophila embryo under
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A B C Figure 1. Sharpness in Development and

Cooperativity Mechanisms

(A) Top: Drosophila embryo stained for Hb

expression. Bottom: plot adapted from Figure 4A

of Gregor et al. (2007) showing mean ± SE of Hb

and Bcd from several embryos (blue) and a fit to

the Hill function H5 (red).

(B) Examples of indirect, long-distance coopera-

tivity, adapted from Figure 1 of Spitz and Furlong

(2012).

(C) Top: pairwise cooperativity between two sites.

Bottom: higher-order cooperativity of order three.
regulation by the maternal morphogen Bicoid (Bcd) (Figure 1A).

The expression levels of Hb and Bcd proteins are related to

each other in a way closely approximated by a simple algebraic

expression (Gregor et al., 2007):

½Hb�
½Hb�max

z
x5

1+ x5
: (1)

Here, the concentration of Hb, denoted ½Hb�, is normalized to its

maximal level, and x denotes Bcd concentration, normalized to

the value at which half-maximal Hb expression is reached, so

that x = ½Bcd�=½Bcd�0:5. Equation 1 describes the hb gene regula-

tion function, which quantitatively expresses how the output of

hb depends on ½Bcd�.
The expression in Equation 1 is a Hill function, HaðxÞ= xa=

ð1+ xaÞ, for which the Hill coefficient, a, has the value a= 5.

Increasing Hill coefficients imply increasing sharpness. In Equa-

tion 1, the sharpness represented by a= 5 reflects the precision

with which individual nuclei use Bcd to determine their position

along the anterior-posterior axis and create the tight boundary

between Hb ‘‘on’’ and Hb ‘‘off.’’

Gregor et al. (2007) explain how the sharpness in Equation 1

arises by saying that it is ‘‘consistent with the idea that Hb

transcription is activated by cooperative binding of effectively

five Bcd molecules.’’ This reflects the conventional bacterial

paradigm, in which sharpness is accounted for at thermody-

namic equilibrium by pairwise cooperativity between TFs,

whereby TF binding at one site influences the affinity of TF

binding at another site (Ptashne, 2004). With n binding sites

and pairwise cooperativity, it is widely believed, as Gregor

et al. (2007) suggest, that sharpness corresponding to a Hill

coefficient of n can be achieved, without requiring any expendi-

ture of energy.

To examine this idea, we use a recently introduced mathemat-

ical framework that generalizes the thermodynamic formalism to

accommodate mechanisms that expend energy (Ahsendorf
et al., 2014). We show that for regulatory

DNA at thermodynamic equilibrium with

only pairwise cooperativity, the experi-

mentally measured sharpness described

in Equation 1 cannot be biochemically

realized, no matter how many TF binding

sites are present. The widely held belief

that the bacterial paradigm can be
extrapolated in this way is not rigorously justified. We believe

this is a compelling example of its insufficiency.

Information integration through nucleosomes or co-regulators

could yield indirect, long-distance forms of cooperativity (Fig-

ure 1B), which could link multiple TF binding sites. To account

for this, we introduce the concept of ‘‘higher-order cooperativ-

ity’’ at thermodynamic equilibrium (Figure 1C). If such coopera-

tivities are present, greater levels of sharpness become possible.

With n binding sites and higher-order cooperativities, a Hill

coefficient of n or more still remains out of reach, but a Hill

coefficient less than n can be achieved. Furthermore, not just

the Hill coefficient but also the overall shape of the gene regula-

tion function (GRF) can match what is found experimentally:

with enough binding sites, GRFs can be found that are statisti-

cally indistinguishable in shape from the Hill functions in

Equation 1. However, these GRFs lie on the edge of what can

be biochemically achieved and impose stringent quantitative

constraints on the mechanisms responsible for higher-order

cooperativity.

Higher-order cooperativities improve sharpness but reveal

fundamental barriers to what can be achieved without the

expenditure of energy. The existence of such barriers was first

suggested in Hopfield’s work on kinetic proofreading (Hopfield,

1974; Ninio, 1975). He showed, in effect, that if a biochemical

systemoperates at thermodynamic equilibrium, then physics im-

poses a barrier to how well a given information processing task

can be accomplished. (In his case, the task was achieving fidelity

in transcription and translation.) The only way to bypass this bar-

rier is to expend energy andmaintain the system away from equi-

librium. Kinetic proofreading is one way to do this.

Here, we identify a ‘‘Hopfield barrier’’ for sharpness in gene

regulation. With n binding sites, a Hill coefficient of n sets the

Hopfield barrier; at thermodynamic equilibrium, no GRF can

reach it, even with higher-order cooperativities. If, however, en-

ergy is expended to maintain regulatory DNA away from equilib-

rium, then much greater sharpness can be achieved.
Cell 166, 234–244, June 30, 2016 235
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Figure 2. Linear Framework Model

(A) The graph G3 showing the 8 microstates and the associated labeled,

directed edges, with middle-layer labels omitted for clarity.

(B) The essential parameters at thermodynamic equilibrium. The association

constants Ki;S have units of ðconcentrationÞ�1, and ki and ui;S are non-

dimensional. SWfig is the set in which site i has been added to the sites in S.

(C) The higher-order cooperativity ui;S measures whether binding of T to site i,

when T is already bound to the sites in S, shows reduced affinity ðui;S < 1Þ,
unchanged affinity ðui;S =1Þ, or enhanced affinity ðui;S > 1Þ, as compared to

binding to site i, when no other sites are bound.
RESULTS

The Rationale for the Model
We introduce a mathematical model for analyzing gene regula-

tion. As with all models, the conclusions depend on the assump-

tions (Gunawardena, 2014). Our assumptions are guided by the

example of hb, but the model is general and not restricted to this

example. The anterior expression pattern of hb is believed to be

regulated by, at least, three enhancers (Perry et al., 2011). Both

the classical P2 enhancer, which is promoter proximal, and a

shadow enhancer, located�3 kb upstream, drive broad anterior

patterns early in embryo development. Later, the central stripe

enhancer drives expression near the middle of the embryo.

Bcd is a transcriptional activator for the P2 and shadow en-

hancers; the stripe enhancer is also targetted by transcriptional

repressors. The stripe enhancer has no effect on sharpness early

in nuclear cycle 14 (Perry et al., 2012), when the data on which

Equation 1 is based (Gregor et al., 2007) were acquired.

Accordingly, we focus on a single TF, binding to a specified

but arbitrary number of sites and functioning solely as a tran-

scriptional activator. TF binding sites can be anywhere on the

genome and are not assumed to be confined to a single

enhancer; thus, our analysis is not limited to the 5–7 Bcd binding

sites thought to be present in the hb P2 enhancer.
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Molecular mechanisms other than TF binding and unbinding,

such as nucleosomes or co-regulators, are not directly repre-

sented in our model, but their influence is captured through their

effects on rate constants and the dependence of these con-

stants on the state of DNA (‘‘microstate’’, see below). This per-

mits general conclusions to be drawn without knowing the

specific mechanisms at work in a particular gene but does not

allow us to assign mechanisms to the effects we find. Other

molecular features, such as post-transcriptional mechanisms

or network effects like feedback, could influence sharpness,

but these are not thought to be relevant for Bcd regulation

of hb. Addressing such features in future work may yield further

insights into sharpness.

A Graph-Based Model of Gene Regulation
We recently developed a graph-based ‘‘linear framework’’ for

modeling gene regulation (Ahsendorf et al., 2014). We use this

to formulate a general model of a gene responding to a TF, called

T, binding as a monomer to a number, n, of sites. Oligomeriza-

tion of a TF in solution can contribute to gene-expression sharp-

ness, but it is not thought to be significant in Bcd regulation of hb

(Lebrecht et al., 2005; Gregor et al., 2007), and we do not

consider it here. In this section and the next, we discuss the

quantitative details of how T binds and unbinds, how cooperativ-

ity is defined, and how T influences transcription.

The model consists of the labeled, directed graph, Gn (Fig-

ure 2A). The vertices ofGn represent the microstates, or patterns

of T bound to DNA, with the binding sites labeled by the numbers

1;/;n. The edges represent binding or unbinding of T from the

microstates. Each edge has a label describing the rate of the cor-

responding reaction. The label on a binding edge is the product

of the concentration of T, ½T �, and an on-rate for binding, ai;S,

where i is the binding site and S is the subset of sites at which

T is already bound. Subsets are denoted fi1;/; ikg, where the

site indices, i1;/; ik , are drawn from the numbers 1;/;n. The la-

bel on an unbinding edge is an off-rate, bi;S0 , where S0 is the sub-

set of sites to which T is bound and i is one of the sites in S0.
Importantly, the on-rates, ai;S, and the off-rates, bi;S0 , can

depend on the site of binding or unbinding, i, as well as on the

pattern of existing binding to a subset of sites, S or S0. This re-

flects the potential influence of background mechanisms, such

as nucleosomes or co-regulators, and allows higher-order coop-

erativities to be introduced below.

The linear framework describes how such a graph gives rise to

a stochastic master equation for the probabilities of the micro-

states. As in the thermodynamic formalism, we make the basic

assumption that regulatory DNA is at steady state. However, un-

like the thermodynamic formalism, the linear framework allows

steady-state probabilities to be calculated regardless of whether

or not the system is at thermodynamic equilibrium (Ahsendorf

et al., 2014); see the Experimental Procedures and the Supple-

mental Information.

Higher-Order Cooperativities and the Exchange
Formula
Higher-order cooperativity betweenmultiple TFbinding sitesmay

be important in gene regulation, but thermodynamic formalism

models have usually been limited to pairwise cooperativity. This



is not a fundamental limitationbut arises from technical difficulties

with the principle of detailed balance, which imposes algebraic

constraints on higher-order cooperativities (Supplemental Infor-

mation) that have not beenworked out within the thermodynamic

formalism. Detailed balance, or ‘‘microscopic reversibility,’’ is a

fundamental requirement arising from the time-reversal symme-

try of the laws of physics (Mahan, 1975). The constraints are a

serious obstacle because they mean that the numerical values

of higher-order cooperativities cannot be chosen independently.

Thus, it is important to determine these constraints (Equation 2)

and to thereby identify a subset of cooperativities for which the

numerical values are independent (Equation 3).

If the regulatory system described byGn can reach thermody-

namic equilibrium, the relevant parameters are the association

constants Ki;S (Figure 2B), of which there are n2n�1 (Supple-

mental Information). To define higher-order cooperativities at

equilibrium, we compare the binding of T to site i when T is

already bound at the sites in S ðKi;SÞ to the binding of T to site i

when T not bound elsewhere (Ki;B, where B denotes the empty

set). This yields a non-dimensional higher-order cooperativity,

ui;S =Ki;S=Ki;B, for which the value indicates whether or not there

is positive or negative cooperativity or independence (Figure 2C).

To non-dimensionalize the remaining association constants, we

define ki =Ki;B=K1;B,

The number of sites in S is called the order of ui;S and denoted

#S; it specifies how many sites collaborate to influence binding.

Pairwise cooperativity corresponds to order 1. Thermodynamic

formalism models set ui;S = 1 for #S> 1. In this case, detailed

balance reduces to a symmetry requirement on pairwise cooper-

ativities, ui;fjg =uj;fig (see Equation 2). With only pairwise cooper-

ativity, there are only nðn� 1Þ=2 parameters, instead of n2n�1;

this greatly simplifies thermodynamic formalism calculations.

We prove that, because of detailed balance, higher-order co-

operativities must satisfy the ‘‘exchange formula’’ (Supplemental

Information),

ui;SWfjguj;S = uj;SWfigui;S; (2)

which summarizes the algebraic constraints among the cooper-

ativities. Here, i, j are sites not in S, while the notation SWfvg, for
v = i or v = j, denotes the addition of v to the sites in S. We further

prove that, if we retain only those ui;S for which i is less than all

the sites in S (abbreviated i < S), then the parameters

K1;B; ki ði > 1Þ; ui;S ði < SÞ; (3)

of which there are 2n � 1, are algebraically independent, and all

the Ki;S can be calculated from them using Equation 2 (Supple-

mental Information). We can thus vary the parameters in Equa-

tion 3 independently and be confident that detailed balance

holds. These fundamental results provide the basis for the equi-

librium calculations that follow.

Equilibrium Gene Regulation Functions
To calculate a gene regulation function (GRF), wemake the same

basic assumption as in the thermodynamic formalism and

consider the overall rate of transcription to be an average over

the steady-state probabilities of the microstates. For this, we
must specify the rate of transcription in each microstate, about

which surprisingly little is known for eukaryotic genes. As ex-

plained above, we assume that T acts as a transcriptional acti-

vator (Supplemental Information), so that the binding of T does

not reduce the expression level. We consider three expression

strategies which work for any number of sites (Figure 3A): all-

or-nothing, in which transcription only occurs when all sites are

bound; one-or-more, in which transcription occurs when at least

one site is bound; and average binding, in which transcription is

proportional to the number of bound sites.

It is computationally infeasible to explore all expression strate-

gies, but these three strategies broadly sample the spectrum of

possibilities (Supplemental Information). All-or-nothing and one-

or-more are extreme opposites, while average binding is an

intermediate strategy. All-or-nothing is widely used in thermody-

namic formalism models, and average binding corresponds to

the ‘‘fractional saturation’’ used in models of protein allostery

(Monod et al., 1965; Mirny, 2010).

The level of protein expression after normalization to its

asymptotic maximum is a rational function of x = ½T �, denoted
fnðxÞ, which has the form, for the all-or-nothing strategy (Supple-

mental Information),

fnðxÞ= cnx
n

1+ c1x +/+ cnxn
: (4)

The coefficients ck are given (Supplemental Information) by a

sum of products

ck =

 X
1%i1 </< ik%n

 Yk
j = 1

kijuij ;fij +1 ;/;ikg
!!

ðK1;BÞk ; (5)

which involves only the independent parameters in Equation 3

and allows higher-order cooperativity of any order up to the

maximum of n� 1. For the other strategies (Figure 3A), only

the numerator of Equation 4 changes (Supplemental Informa-

tion). The GRFs discussed in this paper are strictly increasing

functions (Supplemental Information). For the all-or-nothing

strategy at equilibrium, they also appear to be sigmoidal

(‘‘S shaped’’), so that the derivative of the GRF has only a single

maximum, but this is not so in general (Figure 3B).

The algebraic form of the Hill function, HaðxÞ= xa=ð1+ xaÞ, is
closest to that of the GRF for the all-or-nothing strategy in Equa-

tion 4 (Supplemental Information). If a< n, it is clear that the

former cannot algebraically resemble the latter because the de-

grees of their respective denominator polynomials are different.

If a= n, algebraic resemblance is only possible, and then only

approximately, if the parameters in the GRF are given implau-

sible numerical values (Supplemental Information). We see that

Hill functions are not GRFs. However, the question posed by

Equation 1 is whether a GRF can match the shape of a Hill func-

tion. This is a more delicate problem.

Position and Steepness as Quantitative Measures of
Shape
To determine the match between a GRF and a Hill function, we

introduce two quantitativemeasures of shape.We first normalize

the concentration scale of x = ½T �, in a similar way to Equation 1,
Cell 166, 234–244, June 30, 2016 237
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Figure 3. Gene Expression Strategies and

Shape Measures

(A) The graph G3, with pairs of reversible edges as

unlabelled single lines for clarity, illustrating three

expression strategies for a transcriptional acti-

vator. Each microstate is annotated with a number

describing the corresponding rate of gene

expression, with the maximal rate normalized to 1.

(B) Plot of a hypothetical GRF (black), together with

its derivative (red) showing steepness ðrÞ and po-

sition ðgÞ, as defined in Equation 6. The derivative

can have multiple local maxima, and r and g are

defined at the global maximum.
by taking x0:5 to be the concentration at which fn is half-maximal,

so that fnðx0:5Þ= 0:5, and setting y = x=x0:5. The normalized GRF

is gnðyÞ= fnðyx0:5Þ, where y and gnðyÞ are now both non-dimen-

sional quantities. Note that for HaðxÞ, x0:5 = 1, so that Hill func-

tions are already normalized.

To quantify shape, we take the maximum derivative, rðgnÞ
(‘‘steepness’’), and the position of the maximum derivative

gðgnÞ (‘‘position’’),

rðgnÞ= max
yR0

dgn

dy
; gðgnÞ= z such that

dgn

dy

����
y = z

= rðgnÞ; (6)

which are also non-dimensional quantities (Figure 3B). The

advantage of g and r is that they can be calculated from gn, in

contrast to a numerical fit to a Hill function, which is subject to

statistical noise. Two GRFs with the same g and r (‘‘matched’’)

are not identical but have similar sharpness. Considering only

onemeasure of sharpness, such as r, can bemisleading (below).

Impact of Higher-Order Cooperativity on Sharpness
We first determined the position and steepness of a GRF in the

all-or-nothing strategy with n= 5 sites, allowing higher-order co-

operativity of any order. Although g and r depend only on the co-
238 Cell 166, 234–244, June 30, 2016
efficients ck in Equation 5, these aggre-

gated parameters have no biochemical

meaning and we seek instead to under-

stand how g and r depend on the affinities

and cooperativities in Equation 3, which

are defined in terms of molecular interac-

tions. Because of normalization, g and r

do not depend on K1;B (Supplemental In-

formation), so we set K1;B = 1 in units of

ðconcentrationÞ�1 and chose ki and ui;S

to be in the range ½10�3; 103� by random

logarithmic sampling. We believe this

range is generous, but most of our results

do not depend on it (below; Supplemental

Information).

A sample of 105 GRFs chosen in this

way reveals that position and steepness

are not independent but are constrained

within a crescent-shaped region in which

the highest steepness is found at the ex-

tremes of position (Figure 4A). On the
left of the region, high steepness occurs only for very low position

and the resultant GRFs are highly degenerate: when these GRFs

are fitted to Hill functions, they yield a Hill coefficient of a= 1

(inset at top and caption). The marginal distribution (top) shows

that these degenerate GRFs account for nearly half of all GRFs

in this parameterisation. Degeneracy underscores the impor-

tance of considering g together with r.

The upper edge of the crescent-shaped region has low prob-

ability. We therefore used, for Figure 4 and those that follow, a

biased sampling algorithm to identify the boundary of the region

(Supplemental Information), with the same parameter range

but with the GRFs filtered so that gðgnÞ lies in the interval

½0:5gðHnÞ;1:5gðHnÞ�. This focuses on the GRFs of interest and

avoids the degeneracy near gðgnÞ= 0. We found the gray bound-

ary in Figure 4A.

The right-hand edge of the gray boundary coincides with that

of the randomly sampled region in a series of line segments.

Strikingly, the ‘‘Hill line’’ on which Hill functions are located

(magenta curve) lies just to the right of this boundary. We see

that a GRF cannot have greater position than a Hill function

of the same steepness, so that the Hill functions define a

barrier. The line segments on the boundary of the region touch

the Hill line at their corners and these occur, surprisingly, at
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Figure 4. Position and Steepness for n=5 Sites

(A) Probability density function (blue points) of ðgðg5Þ; rðg5ÞÞ, obtained by random sampling, with the respective marginal distributions (top and right). The inset

(top) shows the GRF of the marked point, annotated with the value a obtained by fitting toHa. The gray line marks the boundary of the position-steepness region,

obtained by a biased sampling algorithm (Supplemental Information). The magenta line is the locus of ðgðHaÞ; rðHaÞÞ for varying a (the ‘‘Hill line’’), with the integer

values of a marked by magenta crosses and numbers.

(B) Higher-order cooperativities (left), plotted on a logarithmic scale, for the GRFs closest in ðg; rÞ distance to the integer Hill coefficients (magenta crosses) in (A),

with the Hill coefficient annotated on the left (magenta). The corresponding curve (right) is annotated with the value a, obtained by fitting to Ha.

(C) Position-steepness boundaries with the parameter range ½10�p; 10p� for varying p. At the top are the higher-order cooperativities (left) and curve (right) for the

marked GRF closest to H5 within the p= 5 region, plotted as in (B).

(D) Position-steepness regions for all three expression strategies; see also Figures 6 and S1.

See also Figure S1.
exactly the integer values, 2, 3, 4, of the Hill coefficient. When

the GRFs which are closest to these points are fitted to Hill

functions, the estimated Hill coefficients correspond very

closely to the integer values (Figure 4B, right). Such a close cor-

respondence in fitted shape is unexpected in view of the lack of

algebraic resemblance between GRFs and Hill functions, as
discussed above. The emergence of bona fide GRFs which

closely match the shape of Hill functions with integer Hill coef-

ficients is intriguing in view of the coefficient 5 found in Equa-

tion 1. However, this shape matching requires high levels of

positive and negative higher-order cooperativity of all orders

(Figure 4B, left).
Cell 166, 234–244, June 30, 2016 239
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Figure 5. Pairwise Cooperativity Only

(A and B) Each panel uses the color-code in the center and shows the Hill line in magenta. (A) Position-steepness regions for the all-or-nothing strategy. (B)

Position-steepness regions for the one-or-more (top) and average-binding (bottom) strategies. The biased sampling algorithm had to be modified to find the

average-binding regions (Supplemental Information).
The boundary of the position-steepness region lies below H5

and approaches it at the tip of a cusp. Changing the parameter

range does not alter the line segments in the boundary, but the

tip of the cusp approaches closer toH5 as the range is increased

(Figure 4C). The GRF closest to H5 has a fitted Hill coefficient

close to 5 (top, right), although not as close as for integer values

less than 5. This still requires high levels of positive and negative

higher-order cooperativity of all orders (top, left).

Each expression strategy reveals a different trade-off between

position and steepness (Figure 4D). The Hill line also presents a

barrier to the one-or-more strategy but from the opposite side,

while the average-binding strategy straddles the Hill line. For the

one-or-more strategy, the position-steepness region approaches

at cusps the Hill functions whose coefficients are integers less

than 5 (Figure 4D) but, in contrast to the all-or-nothing strategy,

the region does not touch the Hill line and the integer-valued Hill

functions are not closely matched to the nearest GRFs unless

the parameter range is increased (data not shown). The barrier

presented by the Hill line seems, therefore, to act differently in

the all-or-nothing and one-or-more strategies. Regardless of the

expression strategy, H5 offers a barrier to all strategies with

n= 5 sites: each region lies below it and only approaches it at

the tip of a cusp as the parameter range is increased.

The features found above are reproduced for different

numbers of sites (Figure S1 for n= 7 sites).

Pairwise Cooperativity Alone Permits Limited
Sharpness
Thermodynamic formalism models have typically been limited

to pairwise cooperativity. We restricted ourselves to pairwise

cooperativity by setting ui;S = 1 for#S> 1. We found that the po-

sition-steepness region for the all-or-nothing strategy increases

initially with increasing n but then shrinks in extent and no GRF
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approaches close to H5 (Figure 5A). The one-or-more and

average-binding strategies do not even get close to H3

(Figure 5B).

Thus, in contrast to common assumptions, pairwise coopera-

tivity alone is insufficient for sharp responses in eukaryotic

genes. None of the expression strategies considered here can

account for H5 in Equation 1 with only pairwise cooperativity,

no matter how many sites are available.

Non-equilibrium GRFs Exceed the Equilibrium
Sharpness Barriers
If the system is maintained away from thermodynamic equilib-

rium by energy expenditure, detailed balance no longer holds.

The non-equilibrium GRF for the all-or-nothing strategy then

takes the form (Supplemental Information)

fnen ðxÞ= dnx
n +/+d2n�1x

2n�1

e0 + e1x +/+ e2n�1x2
n�1

; (7)

where the coefficients of the highest order term, x2
n�1, in the

numerator and the denominator are equal, so that d2n�1 =

e2n�1. GRFs for the other strategies differ only in the numerator

(Supplemental Information). The denominator of Equation 7

shows a striking increase in degree, from n to 2n � 1, in compar-

ison to that of the equilibrium fn in Equation 4, despite the number

of sites being the same.

The parameters in Figure 2B are no longer meaningful away

from equilibrium and the coefficients di and ei in Equation 7 are

expressions in the rate constants ai;S and bi;S0 . For reasons dis-

cussed below, the largest number of sites that we can feasibly

analyze is n= 3 (Supplemental Information).

We took non-dimensional parameters ai;S=a1;B and bi;S0=b1;f1g
in the range ½10�2;102�, deliberately restricting the range so that,



Figure 6. The Non-equilibrium Case for n= 3 Sites

Position-steepness regions for all expression strategies, showing the equilibrium (blue) and non-equilibrium (black) boundaries. The horizontal scale for the one-

or-more strategy is extended.

See also Figure S2.
if the system were at equilibrium, it would be comparable with

the previous equilibrium analysis (Supplemental Information).

Because of normalization, the steepness and position of gne
n

are independent of the values of a1;B and b1;f1g (Supplemental In-

formation), so we set a1;B = 1 and b1;f1g = 1 in their respective

units. For each expression strategy, we found (Figure 6) that

the non-equilibrium position-steepness region is much enlarged

(black boundary) compared to the corresponding equilibrium

region for the same number of sites (blue boundary). The non-

equilibrium regions now include the Hill line up to H3 and the

all-or-nothing region can reach as far as H5 if the parameter

range is increased (Figure S2A).
The limitation to n= 3 sites arises from loss of detailed balance,

which leads to a dramatic increase in the complexity of the coef-

ficients in Equation 7 (Supplemental Information; see the Discus-

sion). This complexity is algebraic, not numerical. To compute

position-steepness regions, cooperativities are treated as sym-

bols whose numerical values are assigned by sampling. Sym-

bolic calculation of the GRF is extremely expensive away from

equilibrium but numerical calculation of individual GRFs pre-

sents no particular difficulty.

Symbolic treatment of parameters is informative because it

reveals the structure of the non-equilibrium GRF (Equation 7).

The denominator of this GRF increases in degree exponentially
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with n but the denominator of the equilibrium GRF (Equation 4)

increases only linearly. This discrepancy arises from loss of

detailed balance (Supplemental Information). With n= 3 sites,

the non-equilibrium position-steepness region comfortably ex-

ceeds the equilibrium region (Figure 6). Because of the exponen-

tial increase in the degree of the GRF denominator, when there

are n= 5 sites, or however many sites are relevant for Bcd regu-

lation of hb, the discrepancy in the position-steepness regions

will be even greater and the non-equilibrium region will extend

well beyond H5.

In confirmation of this, we used numerical parameter values to

find a non-equilibrium GRF on n= 5 sites, with parameters in the

same range, ½10�2; 102�, as in Figure 6, whose position and

steepness match that ofH6 (Figure S2B). If the parameter range

is increased to ½10�3; 103�, then there is a GRF on four sites, for

which position and steepness match that of H5:7 (Figure S2B).

Being away from equilibrium makes it much easier to achieve

the sharpness required for Equation 1.

DISCUSSION

Eukaryotic gene regulation lies at the nexus of many of the cen-

tral issues in modern biology, including multi-cellular develop-

ment (Davidson, 2006), the evolution of complexity (Carroll,

2008), cellular reprogramming (Takahashi and Yamanaka,

2016) and synthetic biology (Keung et al., 2015). The extraordi-

nary molecular complexity implicated in such regulation con-

tinues to present a formidable challenge. It has made it difficult

to see the wood for the trees, to discern general principles and

to unravel how different molecular mechanisms contribute to

specific forms of information processing.

In this paper, we have presented compelling evidence that the

bacterial paradigm, upon which it has been so convenient to

default, is not sufficient for reasoning about eukaryotic genes

and we have introduced appropriate quantitative concepts for

doing so. We have done this by taking seriously the lessons of

the bacterial paradigm itself. The paradigm relied on analyzing

the physics of interaction between TFs and DNA. What we

have done here is to update this foundation for two of the key

processes that influence gene-expression sharpness in eukary-

otes: information integration and energy expenditure.

While information integration is often acknowledged, it has not

been defined sufficiently clearly to know how to find it, making

experimental analysis problematic. We have introduced the

concept of ‘‘higher-order cooperativity,’’ ui;S (Figure 2B), for a

system at thermodynamic equilibrium, as a measure of how

the affinity of TF binding at site i is influenced by the presence

of TF bound at the sites in S. This is a precisely defined quantity

that allows experimentally-testable hypotheses to be framed.

Different TFs often work together and the definition of higher-

order cooperativities that we have given here for homotypic in-

teractions of a single TF can be readily extended to heterotypic

interactions between different TFs. Such cooperativities could

arise from nucleosomes (Mirny, 2010; Voss et al., 2011) or

from co-regulators like Mediator and CBP/p300 (Borggrefe and

Yue, 2011; Wang et al., 2013). Mediator is especially provocative

as a potential mechanism of higher-order cooperativity. Medi-

ator has around 30 subunits and the Med1 subunit alone inter-
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acts with up to 20 different TFs (Borggrefe and Yue, 2011).

Some TFs interact with multiple subunits and the overall Medi-

ator complex exhibits different conformations, which suggests

how local information may be globally integrated (Nussinov

et al., 2013). Our analysis shows that if gene expression follows

an all-or-nothing strategy, high levels of positive and negative

higher-order cooperativity of all orders are needed to yield high

levels of sharpness (Figures 4B and 4C). Experimental measure-

ments will show whether co-regulators like Mediator or CBP/

p300 can meet these requirements.

When energy is expended during gene regulation, much

higher sharpness can be achieved for the same number of TF

binding sites (Figure 6). The concept of a ‘‘Hopfield barrier’’

offers a way to articulate this rigorously. With n binding sites,

the Hopfield barrier to sharpness is set by the Hill function Hn,

whose steepness cannot be exceeded by any equilibrium GRF

(Figure 4D). For GRFs in the all-or-nothing strategy, the Hill line

itself forms a Hopfield barrier (Figure 4C). However, both these

barriers are readily breached away from equilibrium (Figures 6

and S2).

There are many routes through which energy can be

expended, including chromatin reorganization, nucleosome

displacement, protein post-translational modification and DNA

methylation. Experiments which perturb these routes and assay

the impact on sharpness can bring to light which energy expend-

ing mechanisms are particularly relevant. For the specific

example of hb regulation by Bcd, we note that Bcd binds to

Drosophila Mediator in a way that affects early embryonic

patterning (Park et al., 2001; Bosveld et al., 2008) and that Bcd

also binds to the Sin3/Rp3 histone-deacetylase complex (Singh

et al., 2005). The impact of these interactions on sharpness ap-

pears not to have been previously studied. The early Drosophila

embryo provides an unrivalled experimental context for testing

the hypotheses made here and this is now work in progress.

Real-time studies have already confirmed the importance of

non-equilibrium kinetics in gene regulation (Voss et al., 2011;

Hammar et al., 2014). Coulon et al. (2013) have also argued for

the importance of a non-equilibrium perspective. Our results

strongly endorse this but an important challenge lies ahead.

When a system is at thermodynamic equilibrium, detailed bal-

ance implies that any path to a microstate can be used to calcu-

late the steady-state probability of the microstate. The history of

the system is irrelevant. Away from equilibrium, detailed balance

no longer holds and all possible paths to a microstate must be

examined to calculate its steady-state probability. Non-equilib-

rium systems are history dependent. The resultant combinatorial

explosion results in a profound increase in algebraic complexity,

whichmanifests itself in the striking difference between the equi-

librium GRF in Equation 4 and the non-equilibrium GRF in Equa-

tion 7. It is this which leads to the breaching of the Hopfield

barrier. We suspect that further insights into non-equilibrium

gene regulation are concealed within this algebraic complexity.

We are only just learning how to uncover them (Ahsendorf

et al., 2014).

The concepts introduced here encourage us to examine other

forms of genetic information processing. If energy expenditure is

important, what is it buying? What could not be achieved if reg-

ulatory DNA is at thermodynamic equilibrium? Such questions



can be answered by quantifying each information processing

task, as we have done here for sharpness (Equation 6), and

developing experimental systems in which it can be measured.

We may look forward in this way to a quantitative classification

of the kinds of information processing that genes undertake

and an understanding in molecular terms of how energy expen-

diture breaks the corresponding Hopfield barriers.

We note two further implications of the present paper. First,

Hill functions emerge in an unexpected light. When Archibald

Vivian (A.V.) Hill first introduced them in 1913, he recognized

that they had no biochemical justification and were only a conve-

nient fit to the data on oxygen binding to haemoglobin (Hill,

1913). The empirical nature of Hill functions has been repeatedly

pointed out (Engel, 2013;Weiss, 1997).Wewere all themore sur-

prised, therefore, to find that, when the Hill coefficient is an

integer, there are bona fide GRFs which are statistically indistin-

guishable from Hill functions (Figure 4B). In this sense, the Hill

functions appear to be closer to biochemistry thanHill, or anyone

else, could have imagined. We hope to clarify the mathematical

reasons for this in subsequent work.

Second, we have exploited mathematics differently here to

what is sometimes expected of it. We have relied on data to

frame the question but we have not fitted any mathematical

models to data. In recent years, experimental biologists have

become more comfortable with the idea that theory can follow

experiment, as a way to analyze and understand data. Our

colleague Rob Phillips calls this ‘‘Figure 7 theory’’ (Phillips,

2015). Here, we have used mathematics to introduce concepts

and to determine the limits of what can be expected, thereby

providing a foundation for designing new kinds of experiments.

Experiment will follow theory. This is ‘‘Figure 1 theory’’ (Phillips,

2015). We believe it has much to recommend it as we face the

daunting molecular complexity of eukaryotic gene regulation.

We need to think about how such regulation works using con-

cepts which are not just based on intuition and induction but

are also grounded in the underlying physics, which is the

bedrock on which all biology rests. This is an old lesson (Guna-

wardena, 2013; Bialek, 2015). If we have lost sight of it in the

press ofmastering themolecular details, now is the time to revisit

it and construct a new paradigm for eukaryotic gene regulation.

EXPERIMENTAL PROCEDURES

The mathematical model and the results presented here are based on the

‘‘linear framework’’ for gene regulation (Ahsendorf et al., 2014) (see the Supple-

mental Experimental Procedures for full details). The framework starts from a

labeled, directed graph, G, which gives rise to a stochastic master equation,

du

dt
= LðGÞ:u;

for the vector of microstate probabilities, u= ðu1;/uNÞt . Here, LðGÞ is the Lap-

lacian matrix of G and N is the number of microstates in the graph. For the

graphGn used here,N= 2n, where n is the number of TF binding sites. Provided

G is strongly connected, which is the case forGn, the steady state, u�, at which

ðdu=dtÞ j u=u� = 0, is unique up to a scalar multiple. A basis vector may be

calculated in terms of the edge labels in one of two ways, depending on

whether or not the system is at equilibrium. If the system reaches thermody-

namic equilibrium, u�i can be calculated by choosing any path of reversible

edges from the reference vertex 1 to i and taking the product, over all reversible

edges in the path, of the ratio of the label on the forward edge, in the direction
from 1 to i, to the label on the reverse edge. The principle of detailed balance

ensures that this result is independent of the chosen path because of the cycle

condition: on any cycle of reversible edges, the product of the labels going

clockwise around the cycle equals the product of the labels going counter-

clockwise. The cycle condition leads to the exchange formula in Equation 2,

which allows the algebraically independent set of parameters in Equation 3

to be chosen. ForGn, a path of reversible edges can be chosen from 1, the ver-

tex with no sites bound, to i, such that u�i is expressed in terms of the indepen-

dent parameters. Away from equilibrium, u�i has to be calculated using the

matrix-tree theorem as a sum, over all directed spanning trees rooted at i, of

the product of the labels on the edges of each spanning tree. Once u� is known,

the state-state probability of microstate i is given by

PrðiÞ= u�
i

u�
1 +/+ u�

N

:

For a system that reaches thermodynamic equilibrium, the denominator in this

formula is the partition function of equilibrium statistical mechanics, but the

formula equally holds for a system away from thermodynamic equilibrium

with u� calculated as above. The gene regulation function for mRNA produc-

tion rate as output is defined as an average over the steady-state probabilities,

d

dt
½mRNA�=

X
1%i%N

rðiÞPrðiÞ:

The expression rate in microstate i, given by rðiÞ, depends on the gene expres-

sion strategy being followed, as specified in Figure 3. To obtain protein level as

output, assume that mRNA is linearly degraded and that the steady-state pro-

tein level is proportional to the steady-state mRNA level. The proportionality

constants are absorbed in the normalization that underlies the definitions of

position and steepness in Equation 6.

In the equilibrium GRFs, the quantities u�i depend on paths of reversible

edges from 1 to i, which can incur up to n factors of x = ½T �, so that the degree

of the denominator polynomial in PrðiÞ is n (Equation 4). In contrast, in the non-

equilibrium GRFs, the quantities u�i depend on directed spanning trees rooted

at i, which each haveN� 1 edges and can incur up toN� 1 factors of x, so that

the degree of the denominator polynomial becomes 2n � 1 (Equation 7).

The numerical results presented in Figures 4, 5, and 6 are obtained by a

biased sampling algorithm in which the boundary of the position-steepness re-

gion is found by successive approximation. An initial region is found by inde-

pendently selecting parameter values for GRFs by logarithmic random sam-

pling within the specified range, calculating the ðg; rÞ coordinates of these

GRFs, and determining the enclosing boundary. This initial boundary is then

successively improved by randomly altering GRFs on the current boundary un-

til the area of the region ceases to increase. The details, along with the tests

that were used to confirm convergence and to check the numerical accuracy

of the results, are given in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and two figures and can be found with this article online at http://dx.doi.org/
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