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Abstract
Motivation: Post-translational modifications (PTMs) on proteins regulate protein structures and functions. A single protein molecule can pos
sess multiple modification sites that can accommodate various PTM types, leading to a variety of different patterns, or combinations of PTMs, 
on that protein. Different PTM patterns can give rise to distinct biological functions. To facilitate the study of multiple PTMs on the same protein 
molecule, top-down mass spectrometry (MS) has proven to be a useful tool to measure the mass of intact proteins, thereby enabling even 
PTMs at distant sites to be assigned to the same protein molecule and allowing determination of how many PTMs are attached to a sin
gle protein.
Results: We developed a Python module called MSModDetector that studies PTM patterns from individual ion mass spectrometry (I2MS) data. 
I2MS is an intact protein mass spectrometry approach that generates true mass spectra without the need to infer charge states. The algorithm 
first detects and quantifies mass shifts for a protein of interest and subsequently infers potential PTM patterns using linear programming. The 
algorithm is evaluated on simulated I2MS data and experimental I2MS data for the tumor suppressor protein p53. We show that 
MSModDetector is a useful tool for comparing a protein’s PTM pattern landscape across different conditions. An improved analysis of PTM pat
terns will enable a deeper understanding of PTM-regulated cellular processes.
Availability and implementation: The source code is available at https://github.com/marjanfaizi/MSModDetector.

1 Introduction
Post-translational modifications (PTMs) are covalent modifica
tions of proteins that can affect their activity, stability, and in
teraction with other components, dependent on both the type 
and the location of modification on the protein. Proteins can 
have multiple modification sites with various PTMs that act in 
combination to influence protein function (Prabakaran et al. 
2012, Leutert et al. 2021). We refer to the specific combination 
of PTMs on a protein molecule as its “modform” (Prabakaran 
et al. 2012) (Fig. 1A). Proteins harboring multiple modification 
sites are preferentially found to act as hubs in protein–protein 
interaction networks and are significantly more associated with 
human disease than proteins with no known modification sites 
(Huang et al. 2014). Additionally, PTMs also play an important 
role in cellular information processing, with protein modforms 
being able to encode information about upstream conditions 
which in turn guides downstream responses (Prabakaran et al. 
2012). Hence, the successful measurement of co-occurring 
PTMs, rather than PTMs on single sites, is important to connect 
more precisely protein function with cellular physiology 
(Csizmok and Forman-Kay 2018).

Mass spectrometry (MS) has proven to be a powerful tool 
to determine patterns of PTMs (Jensen 2006). The develop
ment of MS methods has paved the way to study protein 
modforms (Prabakaran et al. 2012, Leutert et al. 2021), and 
currently there are two different MS approaches to tackle this 
problem. The predominant “bottom-up” MS strategy uses 
proteases to cleave proteins into smaller peptides before mass 
determination and PTM identification (Aebersold et al. 
2018). Identified peptides are then used to infer the presence 
and modification state of protein groups using tools like 
MaxQuant (Tyanova et al. 2016) or MSFragger (Kong et al. 
2017). This approach is well established and provides high 
mass accuracy and resolution. However, bottom-up MS is 
limited in its ability to detect modifications at distant sites on 
the same protein molecule (Schaffer et al. 2019). Due to enzy
matic digestion prior to MS, it is impossible to distinguish 
whether different modification sites on separate peptides 
originate from a single protein molecule or from distinct mol
ecules (Compton et al. 2018).

An alternative MS approach, called “top-down” MS, aims 
to overcome this issue by characterizing intact proteins, 
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paving the way to uncover co-occurring PTMs that may be 
well separated on an individual protein molecule (Aebersold 
et al. 2018, Compton et al. 2018). Measuring intact proteins 
with top-down MS approaches gives rise to complex isotopic 
distributions in the observed spectrum, expressed in units of 
mass-to-charge ratio (m/z). The isotopic distribution is a re
sult of varying amounts of neutrons for the same element. As 
the mass and number of atoms of a protein increases, the like
lihood of observing more heavy isotopes of that protein spe
cies increases as well (Schaffer et al. 2019). The electrospray 
ionization process produces a distribution of highly charged 
precursor ions with m/z values within the detection range of 
the mass analyzer. The first step to analyze these complex m/ 
z spectra involves deconvolving the isotopic distribution and 
resolving the charge states of the peaks to convert the m/z 
value into mass values. There are many deconvolution algo
rithms, e.g. THRASH (Horn et al. 2000) or FLASHDeconv 
(Jeong et al. 2020), however, this step is often accompanied 
by a considerable number of missassigned peaks (Cai et al. 
2016). A new top-down technology called individual ion 
mass spectrometry (I2MS) has recently been developed 
(Kafader et al. 2020), which can create a true mass spectrum 
by measuring the charge directly to determine the mass of 
each ion. Thus, there is no need to infer the charge state in or
der to convert the m/z values into mass values. On its own, 
without fragmentation of the protein and analysis of the frag
ments (tandem mass spectrometry), I2MS is unable to resolve 
modforms with the same numbers of modifications of the 
same type, as these have identical mass shifts (Fig. 1B). We re
fer to such modforms with identical mass shifts as PTM 
“patterns”; modforms 2, 3, and 4 in Fig. 1A form such a pat
tern, with just a single phosphorylation. It may further hap
pen that distinct patterns have mass shifts that are sufficiently 
similar that they cannot be resolved by I2MS alone (Fig. 1B).

Commonly available tools like MASH Suite Pro (Cai et al. 
2016) or TopPIC (Kou et al. 2016) face compatibility issues 
with I2MS data. Their reliance on deconvolution methods 
that assume multiple charge states, coupled with a depen
dency on MS/MS for PTM identification, limits their applica
bility to I2MS-generated true mass spectra. Furthermore, 
identification of unmodified or modified proteins is based on 
matching the observed spectra to entries in a protein sequence 
database (Schaffer et al. 2019). If the modified protein is not 

listed in the database it remains undetected. To overcome this 
issue, some tools allow a mass offset during the database 
search and matching process to account for unknown mass 
shifts (Liu et al. 2012). However, the number of PTMs 
allowed to explain the unknown mass shifts is usually limited 
to a small number, e.g. one or two PTMs in the case of 
TopPIC (Kou et al. 2016). Accordingly, the modforms and 
PTM patterns of important hub proteins harboring many 
modification sites cannot be studied with commonly avail
able tools.

Therefore, we developed a Python module, called 
MSModDetector, to facilitate the analysis of I2MS mass spec
tra and interpretation of PTM patterns. MSModDetector 
consists of an algorithm that detects mass shifts within the 
mass spectrum and a linear program to estimate the PTM 
patterns corresponding to a given mass shift. The algorithm 
is not limited in how many different PTMs can be used to ex
plain a given mass shift (Fig. 1C). We applied the algorithm 
to experimental I2MS data, obtained from the tumor suppres
sor protein p53 in MCF7 cells; p53 is a hub protein and 
known to be modified at many sites (Hafner et al. 2019). We 
present a table of mass shifts for p53 under different cellular 
conditions with the corresponding PTM patterns (Table 1).

In order to set these results in context and understand how 
many predicted PTM patterns are correct, we constructed a 
simulated dataset and evaluated the algorithm on it. We in
troduced noise and error to the simulated data and con
structed overlapping isotopic distributions to see how much 
noise/error or overlap can be tolerated by the algorithm in or
der to make reasonable predictions. We observe that adding 
noise or error to the data does not impact the algorithm’s pre
diction, however overlapping isotopic distributions interfere 
with the results.

2 Materials and methods
The Python module MSModDetector provides an algorithm 
that takes I2MS data as input and determines mass shifts 
within a pre-selected mass range for a protein of interest. The 
relative amount of each mass shift is calculated and a PTM 
pattern is inferred for every detected mass shift using a linear 
program. For the algorithm to run successfully, the minimum 
average mass of the protein of interest is required to be 

Figure 1. PTM pattern inference problem. The protein population in (A) can be modified by phosphorylation (Ph) at the serine (S), threonine (T), or 
tyrosine (Y) sites or it can be acetylated (Ac) at the lysine (K) sites, leading to different combinations of PTMs (“modforms”) within the population of the 
same protein. All 32 possible modforms are listed in Supplementary Fig. S1. The numbers on the bottom right indicate the amount of the respective 
modform. (B) I2MS measures the total mass of each protein molecule and generates a true mass spectrum. Modforms 2, 3, and 4 have the same mass 
shift and the same isotopic distribution, as do modforms 7 and 8. These “patterns,” which have the same numbers of different modifications, are what is 
resolved by I2MS. The patterns with one phosphorylation (modforms 2, 3, 4) or 2 acetylations (modform 9) cannot be resolved visually in the spectrum as 
their isotopic distributions overlap too closely. (C) The goal of MSModDetector is to identify mass shifts caused by the modifications and to infer which 
PTM patterns are present and estimate their abundance using linear programming.
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14 kDa (see Section 2.1.3 for further details). The algorithm 
is tested on simulated and experimental I2MS data. These 
data sources will be described in Sections 2.3 and 2.4, respec
tively. Figure 2 depicts the workflow of the algorithm and a 
detailed description of the processes of mass shift detection 
and PTM pattern inference is given in the following sections.

2.1 Detection of mass shifts
2.1.1 Raw data preprocessing
Raw I2MS data is processed to create mass spectra as described 
(Melani et al. 2022). The spectra are exported as profile.mzml 
files and contain mass values in units of Dalton (Da) and their 
corresponding intensity values which indicate the relative 
abundances (Fig. 2A). The algorithm uses the profile.mzml 
files as input and requires a predefined mass range in which 
the algorithm searches for mass shifts. The mass range should 
contain the mass of the protein of interest. Intensities of the 
masses within this range are normalized by the maximum in
tensity in this window. Normalized intensities facilitate 

subsequent analyzes and are re-scaled after the analysis. The 
profile data are further processed by centroiding, which 
involves retaining only the maximum intensity value of each 
peak in the mass spectrum. Peaks above a pre-determined 
noise level are defined as signals and used to determine mass 
shifts (Fig. 2B). Setting the right noise level is crucial: if the 
value is too low, more peaks might be wrongly labeled as sig
nals, and if the value is too high, the algorithm might miss ac
tual signals by mistaking them for background noise. The 
noise level defined in this study is equal to one-half of the stan
dard deviation of all intensities within the predefined mass 
range. We found this metric to be a good measure to distin
guish signals from background noise.

2.1.2 Gaussian model and isotopic distribution
After preprocessing the raw data, the isotopic distributions in 
the mass spectrum are fitted by Gaussian functions (Fig. 2C). 
For this we assume that the isotopic distribution follows a 
Gaussian distribution and the standard deviation σ of the 

Table 1. PTM pattern predictions for the I2MS data of endogenous p53 under Nutlin-3a (10 μM) and UV (10 J/m2) conditions.a

PTM pattern Rel. abundance

Mass shift PTM pattern (min both) PTM pattern (min ptm) Nutlin-3a (rep. 1) Nutlin-3a (rep. 2) UV (rep. 1) UV (rep. 2)

120.7 1[Ph-OH]1[Na] 1[Cys] 0.13560 0.1740 0.0864 0.0898
136.2 1[Ph]2[Me2] 1[Cys]1[Ox] 0.0239 - - -
180.3 1[Ph]2[Me3]1[Ox] 1[Ph]2[Me3]1[Ox] - 0.0714 0.0273
200.7 1[Ph-OH]1[Ph]1[Na] 1[Cys]1[Ph] 0.0470 0.0730 0.0290 0.1002
216.7 1[Cys]1[Ph-OH] 1[Cys]1[Ph-OH] - 0.0226 - 0.0329
259.3 1[Cys]1[Ph-OH]1[Me3] 1[Cys]1[Ph-OH]1[Me3] - - - 0.0366
297.8 2[Ph-OH]1[Ph]1[Na] 1[Cys]1[Ph-OH]1[Ph] 0.1578 0.1292 0.1045 0.0710
309.9 3[Ph-OH]1[Ox] 3[Ph-OH]1[Ox] - 0.0265 -
357.4 3[Cys] 3[Cys] 0.0617 0.0763 0.0415 0.0380
377.3 1[Cys]2[Ph]2[Me3]1[Me1] 1[Cys]1[Ph-OH]2[Ph] 0.1045 0.1390 0.1510 0.1359

a For each mass shift the relative abundances for both replicates are shown as well as PTM pattern predictions for two different objective functions: “min 
both” is minimizing the number of PTMs and the error between observed and inferred mass shift and “min ptm” is only minimizing the number of PTMs. 
Mass shifts detected in more than one condition or replicate are combined by calculating their average (see Section 2.1.5). The following PTM types are 
considered for the pattern combinations: phosphorylation (Ph), acetylation (Ac), methylation (Me1), di-methylation (Me2), tri-methylation (Me3). In 
addition to biological functional modifications we also consider artifacts like: phosphate (Ph-OH), oxidation (Ox), cysteinylation (Cys), sodium adduct (Na).

Figure 2. MSModDetector workflow depicted on a toy example. (A) I2MS raw data is preprocessed and (B) only peaks above a determined noise level 
are selected for further analysis. (C) Gaussian distributions are then fitted to the data by sliding a window of fixed size over the spectrum. A chi-square 
score assesses the goodness of fit and selects for the best fit. (D) The means of the Gaussian distributions are used to calculate the mass shift to the 
reference protein mass. (E) The area under the curve (AUC) is calculated for each distribution and used to relatively quantify every mass shift in relation to 
all detected mass shifts. (F) A linear program (LP) infers potential PTM patterns for the given mass shifts. Here, a PTM pattern of one oxygen (Ox) is 
inferred for a mass shift of 16 Da.
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isotopic distribution for a protein of interest is constant and 
does not change when modifications are considered. The 
standard deviation σ is calculated by fitting a Gaussian func
tion to the isotopic distribution of the unmodified protein of 
interest. The isotopic distribution of the unmodified protein 
is calculated with the Python package pyopenms and only 
requires the protein sequence in FASTA format.

The algorithm detects mass shifts by sliding a window of 
fixed size over the mass spectrum with a step size of 1 Da and 
fitting Gaussian distributions to the data within this window. 
Since the standard deviation σ is constant only the mean and 
amplitude are fitted to the data. The user can determine how 
much overlap between two fitted Gaussian distributions is 
allowed. We determine the allowed overlap by setting a mini
mal distance between the mean values of two fitted Gaussian 
distributions. We recommend the minimum distance to be at 
least two-thirds of the window size.

2.1.3 Chi-square goodness of fit
The chi-square goodness of fit test is used to evaluate the fit 
of the Gaussian function to the data. The null hypothesis of 
the chi-square goodness of fit test assumes that the observed 
(experimentally obtained) distribution is the same as the 
expected (Gaussian fitted) distribution. Therefore, if the P- 
value is small (less than the pre-determined significance level) 
we can reject the null hypothesis that both distributions are 
the same, whereas high P-values reflect a good fit. Hence, for 
every fit, a chi-square score is calculated and a P-value is 
assigned after each step. All fitting results with a P-value be
low the user-defined significance level are removed. 
Furthermore, if the mean values of two adjacent Gaussian 
distributions are closer than the user-defined allowed over
lap, the fit with the lower P-value is removed as well.

To perform the chi-square test, at least 5 peaks are required 
within the sliding window. Hence, the size of the sliding win
dow should be bigger than 5 Da to make sure that at least 
five peaks are used to calculate the chi-square score and 
P-value. We further recommend selecting a window size that 
covers approximately the upper third part of the isotopic dis
tribution (Supplementary Fig. S2). For proteins with an aver
age mass of at least approximately 14 kDa, we can make sure 
that the upper third part of the isotopic distribution contains 
at least five peaks (Supplementary Fig. S2B).

2.1.4 Mass shift identification and relative quantification
After the mean values are determined, they are used to calcu
late the mass shift from the reference mass of the unmodified 
protein of interest (Fig. 2D). Each mass shift is relatively 
quantified by calculating the area under the curve of its 
Gaussian distribution (Fig. 2E). The abundance for a mass 
shift (A) is calculated as the integral of the Gaussian function, 
A¼ α � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � π
p

, with α being the amplitude of the fit
ted Gaussian function. This approach provides a notion of 
the abundance of the given mass shift relative to all mass 
shifts observed within the predefined mass range.

2.1.5 Mass shift alignment across samples
To compare mass shifts across multiple samples, the fitted 
mean values of all samples are aligned with each other. If for 
instance the difference in mass for the mean values in two dif
ferent samples is <0.5 Da, then both mean values are as
sumed to represent the same species and are binned together. 
The binning size depends on the pre-defined mass tolerance, 

the maximal accepted error between the observed and in
ferred mass shift, and can be increased by setting a higher 
mass tolerance. However, we emphasize that increasing the 
mass tolerance and considering a larger bin size results in 
more potential PTM pattern combinations. The mean values 
are binned and an average mass from all mean values within 
one bin is calculated. The average mass is then used for mass 
shift identification.

2.2 Inference of PTM patterns
For each mass shift, a linear program (LP) is solved to iden
tify potential combinations of PTM patterns (Fig. 2F). The 
user must provide a table listing all relevant PTM types, how
ever, a higher number of provided PTM types results in more 
possible PTM pattern combinations. One mass shift can give 
rise to multiple solutions of PTM patterns. To select for one 
PTM pattern, the algorithm provides three different objective 
functions that result in the following LPs: (i) an LP with the 
objective to minimize the number of total PTMs on a single 
protein, (ii) an LP with the objective to minimize the error be
tween observed and inferred mass shifts, and (iii) an LP that 
combines both previously mentioned objective functions. 
While the objective functions are not biologically motivated, 
they are still useful and can be seen as a method to rank the 
multiple solutions or potential PTM patterns. In order to ob
tain the best k optimal solutions, the variable laps can be 
specified by the user which determines the number of times 
the optimization problem is solved. We prevent obtaining the 
same solution k times by using the optimal solution of the 
previous run as a constraint for the current run.

2.2.1 Linear program to minimize the number of PTMs
The first LP is based on the objective of minimizing the total 
number of PTMs, P, on a single protein: 

min P ¼
X

i

pi (1) 

s:t: jm � p − obsj≤ ɛmax; (2) 

Pmin <P; (3) 

0≤ pi ≤ ubi; (4) 

where m is a row vector that contains the masses of the differ
ent PTMs and p is a column vector of the unknown number 
of each PTM type. Multiplying both vectors results in the 
mass shift for the inferred PTM pattern. The difference be
tween the theoretical and observed mass shift obs is con
strained by ɛmax, the mass tolerance defined by the user. Each 
number of PTMs pi is a positive number and is constrained 
by an upper bound ubi. Pmin is the optimal solution from the 
previous result and helps to find the next optimal solution.

2.2.2 Linear program to minimize the mass error
For the second LP we minimize the difference, ɛ, between in
ferred and observed mass shift. 

min ɛ ¼ jm � p − obsj (5) 

s:t ɛmin < ɛ≤ ɛmax; (6) 

0≤pi ≤ubi; (7) 

where m � p determines the inferred mass shift. We can ex
plore the solution space and solve for the next optimal 
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solution by setting a minimal difference ɛmin, or mass error 
between inferred and observed mass shift.

2.2.3 Linear program that combines both objective functions
In order to find the PTM pattern with the smallest number of 
PTMs that also minimizes the error between observed and in
ferred mass shift, we defined an objective function that sums 
both previously mentioned functions together: 

min f ðɛ;pÞ ¼
ɛ

ɛmax
þ

P
i pi

Pmax
(8) 

s:t: jm � p − obsj≤ ɛ; (9) 

f ðɛprev;pprevÞ< f ðɛ; pÞ; (10) 

0≤ ɛ≤ ɛmax; (11) 

0≤pi ≤ubi; (12) 

the mass difference ɛ and number of PTMs are variables of 
the LP and are normalized before adding them up together in 
function f ðɛ;pÞ. Again, we use the previous value, here 
denoted as f ðɛprev;pprevÞ, to constrain the solution space and 
find the next optimal solution.

2.3 I2MS data of endogenous p53 extracted from 
MCF7 cells
Experimental I2MS data were generated for endogenous p53, 
which was extracted from MCF7 cells by immunoprecipita
tion. Two conditions were used to obtain endogenous p53, 
which is expressed at low levels under basal conditions. In the 
first condition, p53 levels were enhanced by adding 10 μM 
Nutlin-3A, which inhibits the E3 ubiquitin ligase MDM2 and 
thereby prevents p53 degradation. Nutlin-3a does not affect 
p53 PTMs. The second condition used 10 J/m2 ultraviolet 
(UV) radiation to induce DNA damage in cells, which in turn 
activates kinases known to phosphorylate p53 (e.g. ATR, 
CHK1) and create further modifications (Liu et al. 2019). 
Samples were taken 7.5 h after treatment, at which time p53 
levels were elevated (Supplementary Fig. S3). For each condi
tion, two replicates are available.

2.4 Generation of mass spectra from simulated PTM 
pattern distributions
We generated mass spectra from simulated PTM pattern dis
tributions in order to evaluate the algorithm’s performance. 
The PTM pattern distributions are generated manually and 
given in the Supplementary Tables S1–S3. They range from 
simple PTM pattern distributions containing only phosphory
lation to complex PTM patterns whose isotopic distributions 
are overlapping. The isotopic distributions are calculated for 
each PTM pattern using the Python package pyopenms. To 
make the simulated data more realistic, we added noise and 
error estimated from the experimental I2MS data described in 
the previous section.

We added different types of noise and error to the theoreti
cal isotopic distributions: (i) basal noise, (ii) vertical error, 
and (iii) horizontal error. An isotopic distribution without er
ror or noise follows approximately a Gaussian distribution 
and the peaks have a spacing of 1 Da, see Supplementary Fig. 
S2 for an example of unmodified p53. To estimate the basal 
noise, a region within the mass spectrum without any signal 
was selected, from 47 kDa to 49 kDa (Supplementary Figs 
S4B and S5A). The horizontal error is defined as any 

deviation from the standard spacing of 1 Da between two 
peaks (Supplementary Fig. S5B). For the vertical error, a 
Gaussian model was fit to the region where the signal is lo
cated that presumably contains the modforms of p53 
(Supplementary Fig. S4A). The ratio between the fit and the 
respective peaks is plotted as vertical error in Supplementary 
Fig. S5C. We fit beta distributions to the noise and error dis
tributions depicted in Supplementary Fig. S5 and randomly 
selected from the fitted distributions to add basal noise and 
horizontal and vertical error to the theoretical isotopic 
distributions.

3 Results
The algorithm developed in this study is used to infer PTM 
patterns for a protein of interest from true mass spectra gen
erated by I2MS. The algorithm is tested on experimental data 
from the tumor suppressor protein p53 which has over 100 
possible modification sites and is therefore a good example to 
test the limits of our tool. For the experimental data, we are 
not able to evaluate the algorithm’s predictions as we do not 
know the correct PTM patterns. Therefore, we created simu
lated datasets with manually generated PTM patterns to test 
the performance of MSModDetector and to indicate the chal
lenges for detecting mass shifts and predicting correct PTM 
patterns from I2MS data.

3.1 Challenges of mass shift detection and PTM 
pattern inference
We are using a simulated dataset to understand what proper
ties of the mass spectrum make it difficult to detect mass 
shifts and infer PTM patterns. In the following sections, we 
will discuss these properties and analyze their impact on the 
predictions by using simulated data of overlapping isotopic 
distributions (Fig. 3) and of phosphorylation patterns on p53 
(Fig. 4). The simulated PTM patterns are listed in 
Supplementary Tables S1 and S2. Noise and error are added 
to the theoretical spectra and drawn randomly from the dis
tributions estimated from the experimental I2MS data 
(Supplementary Fig. S5). Since noise and error are randomly 
drawn, we generate each mass spectra a 100 times, so every 
performance evaluation on simulated data with noise and er
ror is the average of 100 simulations.

3.1.1 Overlapping isotopic distributions
Isotopic distributions of protein molecules with different 
masses can overlap in the mass spectrum and make the task 
of resolving adjacent distributions challenging. In our exam
ple we only look at a selected protein of interest, hence the 
different masses are caused by different PTM patterns. A 
phosphorylation for instance adds �80Da to the protein’s 
mass while two acetylations add �84Da to the protein’s 
mass. While this is no problem for the linear program to dis
tinguish between these two PTM patterns, it is challenging to 
differentiate between both isotopic distributions. The closer 
the distributions are, the more likely the algorithm will detect 
only one distribution with a skewed mass shift value that lies 
in between both distributions. To test how much overlap can 
be tolerated by the algorithm in order to be able to separate 
adjacent distributions, we generated a dataset with decreas
ing amounts of overlaps. Figure 3 shows isotopic distribu
tions that differ in their average mass value by 2Da to 16Da. 
We added basal noise and vertical and horizontal error to the 
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distributions and ran 100 simulations. Two isotopic distribu
tions are assumed to be successfully separated by 
MSModDetector if the mean values of both distributions 
could be detected within a mass tolerance of 20ppm in more 
than 75% of the simulations. Adjacent isotopic distributions 
whose mean values differ by at least 10Da can be separated 
by MSModDetector. A difference in 8Da could only be sepa
rated in 29% of the times and everything <8Da could not 
be separated.

3.1.2 Basal noise, horizontal, and vertical error
Next, we analyzed the impact of basal noise as well as hori
zontal and vertical error, individually and in combination, on 
mass shift detection using manually generated phosphoryla
tion patterns on p53 (Fig. 4A). The underlying 

phosphorylation pattern data are shown in Supplementary 
Table S2. Every performance evaluation in Fig. 4B is based 
on 100 simulations of the mass spectrum with the respective 
noise/error and the depicted values indicate the average value 
of 100 predictions.

Experimentally obtained mass spectra contain basal noise 
which are fluctuations of the background level in the absence 
of an analyte. Therefore we need a threshold to distinguish 
between signal and noise. By choosing a high threshold, we 
might loose PTM patterns that are of low abundance; but 
with a low threshold, the algorithm might detect an increased 
number of incorrect mass shifts. In the example of multiple 
phosphorylations in Fig. 4B, adding basal noise to the clean 
theoretical mass spectrum does not influence mass shift detec
tion. MSModDetector also predicts the relative abundance of 

Figure 3. Simulated isotopic distributions with varying amounts of overlap. Basal noise as well as vertical and horizontal error are added to the mass 
spectrum, which is generated 100 times. Percentages indicate how many times out of the 100 simulations the overlapping distributions could be 
separated by MSModDetector. Isotopic distributions that overlap by <10 Da cannot be separated by the algorithm.

Figure 4. Impact of noise and error on the algorithm’s prediction. (A) Theoretical mass spectrum of manually generated p53 phosphorylation patterns. 
Basal noise, horizontal, and vertical error are sampled randomly 100 times from the respective beta distributions (see Supplementary Fig. S5). (B) 
Performance evaluation of the seven mass shifts shown in (A). The mass tolerance is set to 20 ppm and each value depicted here is the average of 100 
simulations. On the left, the number of detected mass shifts is displayed for all different combinations of noise and error, and how well their predicted 
abundances match the observed abundances is shown. On the right, the average values for all correct PTM pattern predictions are shown for three 
different objective functions.
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each detected mass shift. We indicate the accuracy of the pre
diction by calculating the R-squared value between the ob
served and predicted relative abundance. The relative 
abundance prediction is only slightly altered when the data 
contains basal noise (Fig. 4B).

In addition to basal noise, experimentally obtained I2MS 
spectra show error/variation in the horizontal and vertical 
axes. For the phosphorylation pattern example given in  
Fig. 4A, the algorithm is robust against these errors in terms 
of mass shift detection and only slightly impacted by vertical 
error for estimating abundances (Fig. 4B).

3.1.3 Impact of the objective function on PTM 
pattern prediction
PTM pattern prediction is mostly impacted by the choice of an 
objective function for the linear program. To test the perfor
mance of different objective functions, we used the detected 
mass shifts described in the previous section and predicted 
PTM patterns for them using three different objective functions: 
minimizing the number of total PTMs (min #ptm), minimizing 
the error between observed and inferred mass shifts (min error), 
and minimizing both the number of PTMs and the error (min 
#ptm þ error). For more details on the different objective func
tions and linear programs see section 2.2 in Methods.

The mass tolerance for this evaluation, i.e. maximum 
allowed error between observed and inferred mass shift, is set 
to 20 ppm. We observe that minimizing the error between in
ferred and observed mass shift is only a good choice if there is 
no basal noise or horizontal/vertical error (Fig. 4B). If we 
choose the objective function that minimizes the number of 
PTMs, we are not able to predict correct PTM patterns for the 
two highest mass shifts (�400 Da and �480 Da). The bigger 
the mass shift is, the more combinations are possible for the re
spective mass and the more difficult it becomes to infer the cor
rect PTM pattern. Furthermore, increasing the mass tolerance 
expands the number of feasible solutions, and also poses a 
greater challenge for the algorithm to infer the correct PTM 
pattern (Supplementary Fig. S6). The combination of both 
objectives, minimizing error and the number of PTMs, gives 
the best results (Fig. 4B). However, we want to emphasize that 
minimizing the number of PTMs is computationally faster.

3.2 Evaluation on a complex PTM pattern landscape
As a next step, we generated a complex PTM pattern dataset 
(Fig. 5A) with four different PTM types (phosphorylation, 
acetylation, cysteinylation, oxidation) to further test the algo
rithm’s performance on a simulated dataset that visually 
resembles the experimental data of endogenous p53, which 
will be analyzed in the next section. The mass tolerance is set 
to 36 ppm for this evaluation to see how well 
MSModDetector performs when predicting PTM patterns 
given a higher mass error allowance. The PTM patterns of 
the complex dataset are listed in the Supplementary Table S3. 
Basal noise and error are added to the theoretical mass spec
trum, which is then generated 100 times. We tested the objec
tive function that minimizes the number of PTMs as well as 
the objective function that minimizes both the number of 
PTMs and the error between inferred and observed mass 
shifts. Figure 5B shows for each mass shift how often they 
could be detected out of 100 simulations and how many of 
the PTM pattern predictions are correct for both objective 
functions. A PTM pattern prediction is correct if it matches 
the PTM pattern in the simulated dataset. Furthermore, a 

mass shift is considered to be successfully detected if it is 
detected in >75% of simulations. The same threshold applies 
to PTM pattern predictions.

The performance for this complex PTM pattern landscape 
is notably reduced compared to the simulated data with phos
phorylation patterns only. All 18 mass shifts could be 
detected and 3 PTM patterns are predicted correctly using 
the objective that minimizes the number of PTMs. For the ob
jective that minimizes both mass error and number of PTMs, 
five PTM patterns are predicted correctly. By further iterating 
through the solution space and reporting the three optimal 
solutions, instead of only the first optimal solution, 
MSModDetector predicts six correct PTM patterns with both 
objective functions (Fig. 5B). Considering the 10 optimal sol
utions increases the number of correct predictions to 7 
(Supplementary Figs S7 and S8), however, in general there 
was minimal benefit to executing >3 iterations, and increased 
iterations run the risk of detecting more incorrect solutions.

The PTM patterns for the mass shifts 177 Da and 353 Da 
contain acetylation, which has approximately the same mass 
as tri-methylation (�42 Da) and makes it therefore difficult 
to resolve. Furthermore, incorrect PTM pattern predictions 
increase with higher mass shifts as more combinations be
come possible making it more challenging for the algorithm 
to find the correct PTM pattern. We observe that from the 
mass shift of 391 Da MSModDetector is not able to predict 
correct PTM patterns.

Taken together, these results show that by iterating 
through the solution space and by looking at the combined 
predictions of both objective functions, we obtain the correct 
PTM patterns for the first 8 lowest mass shifts up to 391 Da.

3.3 Detecting mass shifts in experimental I2MS data 
of endogenous p53
MSModDetector is tested on experimental I2MS data of en
dogenous p53 extracted from MCF7 cells treated with 
Nutlin-3A or UV as described in Section 2.3. We selected five 
biological functional modifications (see Table 1) based on in
formation from UniProt and prior knowledge. Figure 6 
shows the p53 signal that is located in the mass region be
tween 43750 Da and 44520 Da of the I2MS spectrum. The 
p53 signal exhibits multiple isotopic distributions, indicating 
a complex PTM pattern landscape. The algorithm detects 30 
mass shifts across all conditions and replicates, represented 
by black dots in Fig. 6. Each mass shift is determined as the 
mean value of the respective isotopic distribution to which it 
was fit to. The maximum mass shift is around 800 Da. 
Additionally, contaminants, whose mass peaks exceed the 
pre-defined noise level, will be misinterpreted as a modform 
of the protein of interest by the algorithm.

The combinations of possible PTM patterns increase for 
bigger mass shifts. Using a mass tolerance of 36 ppm, we ob
serve that for a mass shift of approximately 400 Da, around 
2500 potential combinations of PTM patterns are possible 
(see Supplementary Fig. S9) when considering the 9 different 
PTM types mentioned in Table 1. As the potential PTM pat
tern increases for higher mass shifts, the problem of PTM pat
tern inference becomes more challenging. Since the previous 
evaluation showed that PTM pattern predictions for mass 
shifts above 400 Da are not correct, we only list potential 
PTM patterns for detected mass shifts under 377.3 Da in  
Table 1. Table 1 lists the optimal PTM patterns for two dif
ferent objective functions. Potential PTM patterns for all 
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other detected mass shifts are listed in the Supplementary 
Table S4.

4 Conclusions
We developed a Python module to process I2MS data and 
study PTM patterns of a protein of interest. The module con
sists of an algorithm that detects mass shifts and a linear pro
gram to infer potential PTM patterns. The algorithm was 
tested on experimental data of endogenous p53 and on simu
lated data to put the PTM pattern predictions in context and 
get an estimate how many predictions are correct on average.

Noise and error in the data only slightly impacts PTM pat
tern predictions, whereas the choice of the objective function 
has a big influence. Furthermore, overlapping distributions 
with average masses differing by <10 Da cannot be separated 
by the algorithm and skew the mass shift detection, leading 
to incorrect PTM pattern predictions.

We tested the algorithm’s performance on a complex PTM 
pattern dataset and observed that the PTM patterns of mass 
shifts higher than approximately 400 Da cannot be resolved. 
Iterating through the solution space can increase the number of 
correct PTM pattern predictions. The user can specify how 
many iterations or rounds of optimizations for each mass shift 
should be done by MSModDetector. The tool will list the best k 
solutions, however, the user has no information on which of the 
best k optimal solutions is the correct PTM pattern or if the cor
rect PTM pattern is included in the k optimal solutions. For our 
simulated example we did not observe significant improvements 
after 3 iterations (see Supplementary Figs S7 and S8). Therefore, 
we listed the top 3 optimal PTM pattern predictions for the ex
perimental I2MS data of endogenous p53 in Supplementary 
Table S4 for two objective functions.

Using I2MS based information reveals the maximum mass 
shift of a protein. Surprisingly, our analysis using p53 shows 
that, at this level of detection, the protein has only a maximal 

Figure 5. Evaluation of PTM pattern predictions for a complex PTM pattern landscape. (A) Basal noise and vertical and horizontal error are added to the 
complex PTM pattern spectrum. The respective PTM patterns are listed in the Supplementary Table S3. (B) The mass spectrum is generated 100 times, 
once to evaluate MSModDetector using the objective function to minimize the number of PTMs, and once using the objective to minimize both the 
number of PTMs and the error between inferred and observed mass shift. For each objective function, we show how often the correct PTM pattern is 
predicted considering only the first optimal solution or the three optimal solutions.

Figure 6. Analysis of endogenous p53 PTM patterns in I2MS data. True mass spectra of endogenous p53 extracted from MCF7 cells. Two conditions 
(cells supplemented with Nutlin-3a or perturbed with UV irradiation) with two replicates each are shown. Horizontal lines indicate noise levels. The 
vertical lines mark the detected mass shifts. Potential PTM patterns for mass shifts up to 377.3 Da are listed in Table 1. The three optimal PTM patterns 
for all detected mass shift are listed in Supplementary Table S4.
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mass shift of approximately 800 Da. Even though p53 has 
>100 modification sites, only a few of them seem to be occu
pied at the same time on a given individual p53 protein. 
Additional insights from our experiments show that UV- 
induced p53 exhibits a broader range of modification states 
compared to Nutlin-3a treatment above 44.3 kDa, consistent 
with the expected increase in phosphorylation and acetyla
tion. Interestingly, Nutlin-3a treated p53 shares the majority 
of common peaks with UV-induced p53 below 44.3 kDa, al
beit at different intensity. This raises an intriguing question: 
Do the observed transcriptional differences between treat
ments, mediated through a population shift in p53 modform 
distribution (Prabakaran et al. 2012), result from changes in 
the levels of a few critically functional modforms that overlap 
between treatments, or from the formation of distinct mod
forms under different conditions?

Whilst MSModDetector is useful for comparing PTM pat
tern landscapes across samples, MS1 based analysis is not 
able to localize the PTMs, for that task MS2 data is required, 
a process we are currently developing. Once MS2 data is eas
ily accessible for the I2MS approach, MSModDetector should 
be extended to incorporate MS2 information for PTM 
localization.

Taken together, this Python module is a useful tool to get 
first insights into a protein’s PTM pattern landscape and 
helps to compare it across samples to identify significant dif
ferences that might give rise to distinct biological outcomes. 
The tool can be used as an initial analysis method to highlight 
important differences between PTM pattern landscapes of a 
protein of interest in different samples. Interesting mass shifts 
and their potential PTM pattern predictions can then be fur
ther validated or studied by other experimental methods. 
These insights will have important implications for the role 
of PTM patterns in disease processes and will help to deter
mine therapeutic targets.
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