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SUMMARY

The ability to learn is typically attributed to animals with brains. However, the apparently simplest form of
learning, habituation, in which a steadily decreasing response is exhibited to a repeated stimulus, is found
not only in animals but also in single-cell organisms and individual mammalian cells. Habituation has been
codified from studies in both invertebrate and vertebrate animals as having ten characteristic hallmarks,
seven of which involve a single stimulus. Here, we showbymathematical modeling that simplemolecular net-
works, based on plausible biochemistry with common motifs of negative feedback and incoherent feedfor-
ward, can robustly exhibit all single-stimulus hallmarks. The models reveal how the hallmarks arise from un-
derlying properties of timescale separation and reversal behavior of memory variables, and they reconcile
opposing views of frequency and intensity sensitivity expressed within the neuroscience and cognitive sci-
ence traditions. Our results suggest that individual cellsmay exhibit habituation behavior as rich as that which
has been codified in multi-cellular animals with central nervous systems and that the relative simplicity of the
biomolecular level may enhance our understanding of the mechanisms of learning.

INTRODUCTION

Habituation is considered to be one of the simplest andmost uni-

versal forms of learning.1 It is ‘‘non-associative’’ in requiring only

a single stimulus, which elicits, upon repetitive presentation, a

steadily declining response that reaches a plateau (Figure 1A).

Such a change in response to the same stimulus is sometimes

offered as an informal, lowest common denominator definition

of learning. We habitually rely on habituation, in accommodating

to ambient light or noise, and it occurs in a remarkably broad

range of settings across the tree of life, from animals to plants,2

plasmodial slime moulds3 and single-cell ciliates,4 and across

different physiological scales, from the whole organism to tis-

sues and individual cells.5 (The same word has also accrued

different meanings: in plants, epigenetic ‘‘habituation’’ to hor-

mone stimulation6 appears quite different to what is studied

here.7) Habituation may be rationalized as a fundamental filtering

mechanism, or regulator of attention, in systems exposed to

multiple stimuli.8,9 Habituation of looking time has been widely

used in studies of cognition in human infants,10 whereas a failure

to habituate is associated with neuro-developmental deficits,

such as autism spectrum disorder.11

In a landmark study in 1966, Richard Thompson and Alden

Spencer collated nine characteristic properties, or ‘‘hallmarks,’’

which had been repeatedly observed in studies of habituation

in vertebrate animals12 (Table 1). These hallmarks go consider-

ably further than merely ruling out receptor desensitization or

effector fatigue, for which appropriate controls are necessary

to ensure that habituation is really taking place. The hallmarks

of ‘‘frequency sensitivity,’’ in which ‘‘more rapid habituation’’ oc-

curs in response to faster stimulus repetition, along with more

rapid spontaneous recovery (#4), and of ‘‘intensity sensitivity,’’

in which more rapid habituation occurs in response to less

intense stimuli (#5), are especially noteworthy because they

show that the underlying system is responding to multiple forms

of information carried by the stimuli. The hallmarks reveal a rich

complexity to habituation that lies beyond the simple depiction in

Figure 1A.

Thompson and Spencer remarked on the agreement in their

hallmarks across a wide array of responses and vertebrate spe-

cies and made the influential suggestion that the hallmarks

should be incorporated into the definition of habituation. Strik-

ingly, these same hallmarks were also found when habituation

began to be studied in invertebrate animals, as, for example, in

Eric Kandel’s studies of learning in the marine snail Aplysia.13

In 2009, a special issue of the journal Neurobiology of Learning

andMemory brought together experts from both sides of the an-

imal kingdom to collate a refined and updated list of ten

hallmarks that now form the basis for assessing habituation in

animals14 (Table 1). The hallmarks in Table 1 are substantially
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similar to those of Thompson and Spencer12, with the addition of

#10, on long-term habituation. Seven of the hallmarks (#1 to #6

and #10) require only a single stimulus, whereas the remaining

three (#7 to #9) require multiple stimuli. We focus here on the

former.

The hallmarks are not the whole story. They represent a

perspective that comes largely from neuroscience. A rather

different perspective on habituation, and on learning more

generally, has emerged within cognitive science and takes issue

with the findings of Thompson and colleagues.15 We are

conscious of being outsiders in a complex debate with intellec-

tual, historical, and sociological dimensions to which we can

hardly do justice here. We defer further explanation to the dis-

cussion, but note that our results appear to reconcile some of

the differences.

Surprisingly, in view of the universality of habituation, the hall-

marks have been less well studied outside the animal kingdom.

Thismay reflect the long-standing debate as towhether complex

behaviors such as learning are found there.16 It is only recently

that the widespread consensus against this possibility has

been reconsidered,17,18 and the possibility of cellular learning

has started to emerge.19–22 Interestingly, sensitization, the coun-

terpart of habituation (discussion), in which an increasing

response is elicited to repetitive stimulation, has recently been

discovered at the cellular level in both the innate immune sys-

tem23 and epithelial tissues.24

The question of habituation in single cells is particularly sig-

nificant. Because the underlying mechanisms must be very

different from those found in animals with central nervous sys-

tems, it is especially interesting to know if, despite suchmarked

differences in implementation, the same hallmarks are never-

theless conserved. This would suggest that the hallmarks are

essential features of the underlying information processing

that gives rise to habituation, which may help, in turn, to char-

acterize that information processing.9 Habituation is now well

attested in single-cell ciliates,4,25,26 although few of the hall-

marks have been assessed in this context. In a series of papers

in the 1990s, starting with McFadden et al.,5 Dan Koshland

showed in mammalian PC12 cells that noradrenaline secretion

habituated to several chemical stimuli. Frequency sensitivity

(but without testing the speed of spontaneous recovery), inten-

sity sensitivity, and some other hallmarks were found to hold

(discussion). Koshland’s work had almost no impact at the

time, perhaps because of the negative consensus mentioned

above. Nevertheless, it indicates that even cells which are not

themselves organisms may still need to invoke habituation to

address the information processing demands of a multi-cellular

environment. (A more recent study considered some of the hall-

marks of habituation in human embryonic kidney cells27 but

used a non-physiological stimulus. Habituation has also been

shown in the slime mold Physarum,3 which is sometimes

referred to as a single cell despite being a synctium with multi-

ple nuclei.)

As for the mechanisms underlying habituation, several models

have been put forward—for a partial overview, see del Rosal

et al.28—but few of these seem appropriate for the biomolecular

setting. The Russian psycho-physiologist Evgeny Sokolov was

among those who developed the cognitive perspective of

learning as the formation of an internal representation, or mem-

ory.29 For habituation, such a memory could downregulate the
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Figure 1. Habituation and networks for im-

plementing it

(A) An illustration of a typical process of habituation,

in which repetitive stimuli (arrows) elicit a steadily

decreasing response that eventually reaches a

plateau.

(B) Negative feedback (NF), in which the response

activates the memory, which, in turn, inhibits the

response. Nodes are denoted I for ‘‘input,’’ M for

‘‘memory,’’ and R for ‘‘response.’’ An arrow de-

notes a positive, increasing effect; a bar denotes a

negative, decreasing effect.

(C) Incoherent feedforward (IFF), using the same

notation as (B), in which the input activates both the

response and the memory, but the memory inhibits

the response.

(D) Concatenated IFF (CIFF) network, in which each

node in (B) corresponds to a modification-de-

modification cycle. Subscript ‘‘i’’ denotes ‘‘inac-

tive,’’ subscript ‘‘a’’ denotes active; an arrow that

encourages activation is positive, whereas an ar-

row that encourages inactivation is negative. The

labels on the edges give the model parameters, as

explained in the text and the STAR Methods. The

parameters Ki on some inactivation edges are for

the Michaelis-Menten formula that allows satura-

tion. Numerical parameter values are given in

Table S1.

See also Figure S7.
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response to a repeatedly presented stimulus. In the molecular

context of a cell, such a memory could build up in proportion

to the response itself, which would be a negative feedback

(NF, Figure 1B), or in proportion to the stimulus, which would

be an incoherent feedforward (IFF, Figure 1C). The simplest im-

plementations of thesemotifs would be the three-node networks

shown in Figures 1B and 1C.

NF and IFF are ubiquitous cellular motifs with distinctive prop-

erties.30 Unlike most other motifs, they characteristically show

adaptation: a sustained stimulus elicits a response peak that

then decays to a lower steady state.31,32 The requirement for

some form of response downregulation is common to both

adaptation and habituation, which suggested that the NF and

IFF motifs were good starting points for studying habituation.

We found that they also have parameter regimes showing habit-

uation, with many of the single-stimulus hallmarks,33 but,

crucially, we were unable to find regimes that exhibit frequency

sensitivity. John Staddon, who was the first to develop mathe-

matical models of habituation,34,35 made the important observa-

tion that serial linkage of motifs could give rise to frequency

sensitivity (Figure 4 in Staddon34). Accordingly, we considered

serially linked, concatenated networks built from the NF and

IFF motifs. We also considered two other concatenated net-

works involving a receptor motif, which implements adaptation

through ‘‘state-dependent inactivation’’36; these other networks

are discussed below.

Staddon was not thinking of the molecular realm and formu-

lated his models in terms of physiological control theory using

discrete, not continuous, time. He also did not examine other

hallmarks. Recent work has considered some of the hallmarks

more systematically but in terms of abstract models.28,37,38

Because such models are not biochemically based, it is hard

to know what they tell us about the capabilities for habituation

in single cells.

To address this problem, we considered molecular networks

whose nodes are implemented by cycles of covalent modifica-

tion and demodification, for example, through phosphorylation

of a protein substrate by a protein kinase and dephosphorylation

by a phospho-protein phosphatase. In the simplest case, indi-

vidual substrate molecules are either modified or unmodified

on a single site and the enzymes catalyze the conversion be-

tween these states. A classic analysis by Albert Goldbeter and

Dan Koshland showed how such a cycle, far from being ‘‘futile,’’

as it was often described in the literature, enables the proportion

of modified substrate to be sensitively regulated by the amounts

and rates of the corresponding enzymes.39 Modification-demo-

dification cycles are ubiquitous in cellular signaling and have

been widely studied as potential implementations of short-term

Table 1. The hallmarks of habituation

Number Name Description

1a habituation repeated application of a stimulus results in a progressive decrease

in some parameter of a response to an asymptotic level

2a spontaneous recovery if the stimulus is withheld after response decrement, the response

recovers at least partially over the observation time

3a potentiation of habituation after multiple series of stimulus repetitions and spontaneous

recoveries, the response decrement becomes successively

more rapid and/or more pronounced

4a frequency sensitivityb other things being equal, more frequent stimulation results in

more rapid and/or more pronounced response decrement and

more rapid spontaneous recovery (if the decrement has

reached asymptotic levels)

5a intensity sensitivity within a stimulus modality, the less intense the stimulus, the

more rapid and/or more pronounced the behavioral response

decrement; very intense stimuli may yield no significant

observable response decrement

6a subliminal accumulationb the effects of repeated stimulation may continue to accumulate

even after the response has reached an asymptotic level [...];

this effect of stimulation beyond asymptotic levels can alter

subsequent behavior, for example, by delaying the onset

of spontaneous recovery

7 stimulus specificityb within the same stimulus modality, the response decrement

shows some stimulus specificity

8 dishabituation presentation of a different stimulus results in an increase

of the decremented response to the original stimulus

9 habituation of dishabituation upon repeated application of the dishabituating stimulus,

the amount of dishabituation produced decreases

10a long-term habituation some stimulus repetition protocols may result in properties of

the response decrement [...] that last hours, days, or weeks

Table adapted from Rankin et al.13

aThe hallmarks investigated in this work.
bWe have used our own names in this paper for these hallmarks. The hallmarks studied by Koshland in PC12 cells are described in Table S5.
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memory.40–43 Accordingly, we feel they are plausible biochem-

ical primitives for implementing habituation. Modification is often

unjustifiably regarded as the main actor in cell signaling but our

treatment places modification and demodification on an equal

footing.

We found that the cleanest behavior was exhibited by the

concatenated IFF network (CIFF) in Figure 1D. In this network,

the nodes of the IFF in Figure 1C are modification-demodifica-

tion cycles of different proteins, in which one of the protein sub-

strate forms is considered ‘‘inactive’’ and the other ‘‘active.’’ The

total number of molecules of each protein is kept constant and

constitutes a separate ‘‘pool.’’ An arrow from a node to a transi-

tion signifies a positive effect on that transition, which may be

activating because it increases the active form or inactivating

because it increases the inactive form.Wedemonstrate that a re-

gion of parameter space may be identified in which this network

robustly exhibits all seven of the single-stimulus hallmarks of

habituation. The similar behavior of the other three networks is

summarized below with details in the supplemental information.

Themotivation for this studyof habituationwas the rehabilitation

of Herbert Spencer Jennings’ work on the avoidance hierarchy in

the ciliate Stentor roselli,16 which prompted a reconsideration of

learning in single cells.20,44 This paper brings together the cumula-

tive contributions of Ziyuan Zhao’s unpublished undergraduate

research project, Lina Eckert’s Master’s thesis33 and part of Sol

Vidal-Saez’s PhD thesis.45 We examine the implications of our

study for the question of single-cell learning in the discussion.

RESULTS

The CIFF model with two concatenated IFF motifs
As discussed in the introduction, we considered the concatena-

tion of two IFF motifs (Figure 1D), each of which consists of an

input (I) that receives a stimulus and activates a memory (M)

and a response (R), which is deactivated by the memory. The

response of the first motif is the stimulus for the second motif.

We assumed that all biochemical reactions follow mass action

kinetics, except for certain response deactivations, which we

took to be saturated through a Michaelis-Menten type formula

(STAR Methods). An enzyme typically exhibits a spectrum of

rate behavior depending on its levels relative to its substrate.46

At one extreme, with limited substrate, its rate increases linearly

in the substrate concentration; at the other extreme, with abun-

dant substrate, it exhibits saturation at a constant rate. In both

cases the rate is also proportional to the enzyme concentration,

which introduces nonlinearity (STAR Methods). We explored

several options for where in the network the nonlinearity and

the saturation should be placed, attempting to minimize the

free parameters and settled on the choices in Figure 1D. It would

be interesting to know how the position and type of nonlinearity

affect habituation, but this lies beyond the scope of this paper.

The CIFF model is a nonlinear dynamical system with 14 param-

eters. We further assumed that the total concentration of each

molecular species is 1, which sets the unit of concentration

and also reduces the number of free parameters. We model

the time evolution of the active proportion of each species using

ordinary differential equations (STAR Methods). To examine

habituation, the model is initiated in its basal steady state with

all species in their inactive forms and is simulated with a

repetitive sequence of ‘‘rectangular’’ stimuli of period T, with

Ton time units at amplitudeA and T � Ton time units at amplitude

0 (Figure 2A). The unit of time is arbitrary, so that stimuli suitable

for cell signaling, with Ton of tens of minutes,47 may be repre-

sented. For the CIFF model, we took Ton = 1:11 throughout

and altered only T. We considered habituation of the proportion

of the response in the active state (‘‘active fraction’’) in the sec-

ond IFF motif (R2;a=ðR2;i +R2;aÞ in Figure 1D).

Measures of habituation and recovery time
In the light of hallmark #1 (Table 1), we assumed that the model

had habituated when the relative change in the output after two

consecutive stimuli was below a small threshold (which we

chose to be 1%). The number of stimuli needed until that

threshold was reached was taken as a measure of habituation

time (denoted ht). In other words, if pi denotes the peak

height of the response to the ith stimulus, then ht = i when

ðpi �pi+1Þ=pi < 0:01 for the first time. We always measure habit-

uation time in units of stimulus numbers, not absolute time,

thereby avoiding any ambiguity when assessing frequency

sensitivity, for which the inter-stimulus interval is changed. This

method was followed by Thompson and Spencer in their original

work12 and has been widely used subsequently.5,25,26,48 Another

measure used in the literature has been the decay rate, esti-

mated by fitting an exponential to the response peaks. However,

our models were sometimes best fitted to a sum of exponentials

with different rates; therefore, we did not consider this method to

be reliable.

For the recovery time (denoted rt), we followed the common

experimental practice of measuring the time taken for the

response to recover once stimulation stops. We simulated the

model without any stimulus for some period following habitua-

tion and then applied a single test stimulus with the same shape

of A and Ton as during habituation. We considered the system to

have recovered when the response to the test stimulus was

within a small threshold (which we chose to be 5%) of the

response to the first pulse in the habituation protocol. We used

a binary search algorithm to find the minimum time required for

the response to reach this level and took that time as the defini-

tion of rt. Recovery time ismeasured in the unspecified (arbitrary)

time units (‘‘a.u.’’) used in the model.

Principal hallmarks: Frequency and intensity sensitivity
By manually choosing parameter values and simulating the

model as described above, we easily found parameter sets satis-

fying habituation and recovery (hallmarks #1 and #2). We did find

parameter sets that showed intensity sensitivity (#5), but it was

much harder to obtain frequency sensitivity (#4). We addressed

this problem in several steps (STAR Methods). First, we devel-

oped an algorithm for assessing whether a simulation output re-

flects habituation. The algorithm extracts the sequence of peaks

and troughs of the output as local maxima and minima of the

trajectory and applies a filter of several conditions to the

sequence to identify correctly habituating trajectories. Second,

this algorithm was used to find parameter ranges that yield a

14-dimensional hypercube in parameter space (Table S1) in

which habituation was typically observed. This parametric region

was found by trial and error through iteratively growing each

parameter range. Third, this region was used to run an
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evolutionary algorithm from the Paradiseo evolutionary-compu-

tation framework49 that minimizes the cost function:

htf1
htf2

+
htf2
htf3

+
htA1
htA2

+
htA2
htA3

(Equation 1)

Here, for each evaluated parameter set, htf1, ht
f
2, and htf3 are

the habituation times for three selected stimulation frequencies,

fi = 1=Ti with f1 > f2 > f3, respectively, at a fixed selected ampli-

tude A, and htA1 , ht
A
2 , and htA3 are the habituation times for three

selected intensities A1 <A2 <A3, respectively, at a fixed selected

frequency. The selected amplitudes and frequencies are shown

in Figures 2B and 3A. Frequency sensitivity requires that htf1 <

htf2 < htf3, so that the first two terms in Equation 1 would both

be <1. Similarly, intensity sensitivity requires that htA1 < htA2 <

htA3 , so that the last two terms of Equation 1 would also both

be <1.

Minimization of Equation 1 does not guarantee that any of its

terms will be <1 nor would it rule out compensation between

them, but in practice, we found low values for which all four terms

were <1. We also did not test recovery times during optimization

for efficiency reasons. As a final step, we tested the 20 parameter

sets with the lowest cost-function values to check whether both

habituation time and recovery time behaved as expected for the

frequency and intensity settings shown in Figures 2B and 3A. Of

those parameter sets that passed this test, we reported the one

with the lowest cost-function value in Figures 2B and 3A, with the

corresponding parameter values given in Table S1. We further

checked for this parameter set that habituation and recovery

times were decreasing, not necessarily strictly, with increasing

stimulation frequency at fixed intensity, for all integer values of

T in the range shown in Figure 2B and also that these times

were increasing, not necessarily strictly, with increasing intensity

at fixed frequency, for all integer values ofA in the range shown in

Figure 3A. Although we cannot be certain by numerical simula-

tion that the same behavior will be found for all intermediate

values of frequency and intensity, these tests suggest that our

results are robust. As a further check, we also carried out param-

eter sensitivity testing, which is reported below.

Figures 2C and 3B give the dynamics of each of the six active

fractions and are very informative. Note first the marked distinc-

tion between the memory variables M1 and M2 under both fre-

quency change and intensity change. This arises from the time-

scale separation evident in the parameter values. The decay rate

for M1 (kMi1 = 0:0382) is more than 20-fold higher than that

for M2 (kMi2 = 0:00147). Accordingly, in this stimulation regime,
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Figure 2. Frequency sensitivity for the CIFF

model

The CIFF model is shown in Figure 1D.

(A) Schematic of the stimulation protocol.

(B) The table shows frequency sensitivity (hallmark

#4) for the parameter values in Table S1, giving the

habituation and recovery time for the three

specified stimulation frequencies and the fixed

amplitude.

(C) Dynamics in terms of stimulus number of the

active fractions of each of the six variables in the

model, following the color code in (B).

(D) Recovery behavior after habituation to a test

stimulus at the post-habituation time shown on the

horizontal axis. The plots give the active fraction of

R2 (solid lines, left-hand scale) at the peak of the

response to a single test stimulus applied at the

post-habituation time specified on the horizontal

axis. These curves were smoothed by interpolation

from the finite set of times at which the test stimulus

was applied. The plots also show the active frac-

tions of M1 (dashed lines, first right-hand scale)

and M2 (dotted lines, second right-hand scale),

measured in the simulation at the specified post-

habituation time. Note that the curves for M1 and

M2 are dynamical trajectories, whereas that for R2

is a ‘‘response envelope.’’ The M1 curves coincide

in the main plot but are seen more clearly on a

larger scale in the left-hand plot. The horizontal

dashed line marks the recovery threshold of 95%.

The vertical dashed line marks the time when M1

has decreased by 95%; this line also marks the

boundary between the fast and slow recovery re-

gimes discussed in the text and visible in the

main plot.

See also Figure S7 and Table S1.
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M1 is largely driven by the stimulus and reaches saturation,

whereas M2 accumulates steadily. Second, M1 and M2 show

opposite behavior under frequency increase at fixed intensity,

with the former increasing and the latter decreasing (Figure 2C,

middle plots). We refer to this as ‘‘reversal.’’ Reversal is not

observed under intensity increase at fixed frequency, with M1

and M2 both increasing (Figure 3B, middle plots).

Reversal has interesting implications for the CIFF model. Un-

der frequency increase at fixed intensity, I1 remains constant,

whereas the peak levels ofM1 increase. Within the first IFF motif,

in which R1 is activated by I1 and deactivated by M1, and within

this stimulation regime, this causes the peak levels of R1 to

decrease with increasing frequency (Figure 2C, top right plot).

In contrast, under intensity increase at fixed frequency, the levels

of I1 increase along with the peak levels of M1. Within this stim-

ulation regime, this causes R1 to increase with increasing inten-

sity (Figure 3B, top right plot). These differences in the output of

the firstmotif are then propagated into the second IFFmotif. With

higher frequency at fixed intensity, R2 is less activated by I2 and

potentiation
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Figure 3. Intensity sensitivity, potentiation,

and subliminal accumulation for the CIFF

model

The CIFF model is shown in Figure 1D.

(A) The table shows intensity sensitivity (hallmark

#5) for the parameter values in Table S1, giving the

habituation and recovery time for the three speci-

fied stimulation intensities and the fixed frequency.

(B) Dynamics in terms of stimulus number of the

active fractions of each of the six variables in the

model, following the color code in (A).

(C) Potentiation of habituation (hallmark #3). Active

fractions of R2 (dark blue curve, left-hand scale)

and M2 (gray curve, right-hand scale) are plotted

during habituation, recovery for half the recovery

time and rehabituation, for the habituation protocol

coded dark blue in (A). Rehabituation yields faster

habituation time, shown by the dashed vertical

lines.

(D) Subliminal accumulation (hallmark #6). Plots of

R2 and M2 as in (C), showing the effect of

continuing stimulation beyond the habituation time

(lower plot), which results in a longer recovery time

compared with stopping stimulation immediately

after habituation (upper plot).

See also Figure S7 and Table S1.

less inactivated by M2 and habituates

more quickly. Moreover, when the stim-

ulus is withdrawn, M2 is at a lower level

at a higher frequency, so that it takes

less time to decay, thereby resulting in a

faster recovery time. With higher intensity

at fixed frequency, the reverse happens:

R2 is more activated by I2 and more inac-

tivated by M2 and thereby habituates

more slowly. The higher levels of M2 also

cause slower recovery at higher intensity,

although that has not been considered as

an aspect of hallmark #5.

The two features of timescale separa-

tion and reversal behavior of the memory

variables appear to be crucial for frequency and intensity sensi-

tivity. We consistently found them for other parameter sets ob-

tained from our optimization procedure (and also for other

models, as reported below). Staddon originally attributed fre-

quency sensitivity to timescale separation but had not appreci-

ated the reversal feature. We reanalyzed Staddon’s discrete-

time model and found that it also exhibited reversal behavior of

the memory variables (data not shown).

Another notable feature of the dynamics, under both fre-

quency and intensity change, is that R1 also habituates. We

therefore considered whether a single IFF motif could also

exhibit the hallmarks of habituation. This was not the case. As

with the CIFF model, habituation and recovery were easily found

but, despite extensive parameter optimization, as described

above, we only found parameter sets that showedweak intensity

sensitivity without frequency sensitivity (data not shown).

The timescale separation gives rise to two phases in post-

habituation recovery, visible in the main plot in Figure 2D. In

the period shortly after habituation, M1 is decreasing rapidly,
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whereas M2 is largely constant (left-hand plot). Here, M1 domi-

nates the dynamics. The response to a post-habituation test dur-

ing this period shows a sharply increasing recovery peak (main

plot). Subsequently, M1 has decayed to a negligible level,

whereas M2 continues its much slower decay (main plot). Here,

M2 dominates the dynamics and the response to a post-habitu-

ation test is a more slowly increasing recovery peak (main plot).

Similar biphasic regimes in post-habituation recovery have been

observed in experimental data, in Aplysia (Figure 2 in Pinsker

et al.13) and in the single-cell ciliate, Stentor coeruleus (Figure 6

in Wood50). Our results suggest that the underlying reason may

also be timescale separation between memory variables,

notwithstanding the substantial differences in the underlying

mechanisms.

Remaining hallmarks: Potentiation, subliminal
accumulation, and long-term habituation
As noted above, a striking feature of the CIFF model that helps

explain frequency and intensity sensitivity is the timescale sepa-

ration in the decay rates of the memory variables,M1 andM2.M2

decays far more slowly and therefore persists for much longer.

This simple fact also accounts for the remaining single-stimulus

hallmarks in Table 1, which we tested for exactly the same

parameter values (Table S1).

For potentiation of habituation (hallmark #3), we habituated the

system at each of the frequency and intensity settings in

Figures 2B and 3A, allowed it to recover without stimulation for

half the corresponding recovery time, and then applied for a sec-

ond time the corresponding habituation protocol. In each case,

we found that the system habituated more quickly, as exempli-

fied in Figure 3C. As can be seen in the plot,M2 has still not fully

decayed when the second series of stimulations is applied, and

this accounts for the faster habituation.

For subliminal accumulation (hallmark #6), we habituated the

system, as for potentiation, at each of the frequency and intensity

settings in Figures 2B and 3A, but, in each case, we continued the

corresponding stimulation protocol beyond the habituation time

until the relative change in the output after two consecutive stimuli

had declined from the habituation threshold of 1% to 0:5%. We

then determined the recovery time in the usual way, as explained

above. In each case, we found that the recovery time was

increased comparedwith stopping stimulation as soon as the sys-

tem had habituated, as exemplified in Figure 3D. Here too, we see

from the plot that M2 continues to build up due to the continuing

stimulation after the habituation time is reached, and this increase

naturally leads to a longer recovery time.

The last hallmark in Table 1, of long-term habituation (hallmark

#10), is the most ambiguous because neither the ‘‘properties’’ to

be seen nor the question of how long is ‘‘long term’’ are made

clear. One of the properties mentioned in Rankin et al.14 is

‘‘more rapid rehabituation.’’ This makes it difficult to distinguish

long-term habituation from potentiation of habituation (#3).

Indeed, potentiation was regarded as an example of long-term

memory by Koshland.51 What the CIFF model tells us is that

there are, indeed, two timescales of memory. The slow decay

and persistence of M2 may continue well beyond the point at

which the other variables, including M1, have relaxed back to

zero. In consequence, the recovery time may be more than 10

times longer than the habituation time (Figures 2B and 3A). If

rehabituation is attempted before the recovery time, then M2

will still be present at some non-zero level, and rehabituation

will be more rapid (Figure 3C). Assuming more rapid habituation

as the relevant property, the CIFF model may be said to exhibit

hallmark #10. However, this is true for exactly the same reason

that it exhibits hallmark #3.

In other literature on short- and long-term habituation, a more

profound distinction has beenmade betweenmemory that is en-

coded by post-translational modification (PTM) in the absence of

protein synthesis, which may last for hours, and memory that is

encoded by gene transcription and protein translation, which

may last for days.52 The models presented here can say little

about this kind of long-termmemory. It is worth noting, however,

that the NF and IFF motifs can be implemented by gene tran-

scription and protein translation, rather than by PTM, and have

similar properties.32 A model in which a second, or even a third,

motif was of this form might correspond more closely to the bio-

logical context in which the long-termmemory described in Goe-

let et al.52 has been found. This remains an interesting direction

for future work.

Other models of habituation
Wehave shown that theCIFFmodel exhibits all seven single-stim-

ulus hallmarks of habituation. We were therefore interested to

know whether this could be replicated by other biochemically

plausible models. The NFmotif (Figure 1B) suggests one possibil-

ity, as noted in the introduction; therefore, we considered a

concatenation of two NF motifs (concatenated NF [CNF], Fig-

ure 4A), inwhich, similar to theCIFFmodel, the nodes of themotifs

correspond to modification-demodification cycles. We further

reasoned that, in a single cell, stimulation would typically be de-

tected by a cell-surface receptor.5,53 Certain receptor classes,

such as receptor tyrosine kinases or G-protein-coupled recep-

tors, respond to stimulation by post-translationally modifying

themselves or accessory proteins.54 In doing so, they can create

refractory states, in which the receptor is neither activated nor can

it respond to stimulation. Such a refractory state would act similar

to an implicit NF because, as it builds up, it reduces the response

to stimulation. This kind of state-dependent inactivation can give

rise to adaptation,36which, aswenoted in the introduction, shares

common mechanistic features with habituation. Accordingly, we

considered a receptor motif (P) consisting of a cycle of three

states: Pi, which can respond to a stimulus and transitions to

the active state, Pa, which transitions to the refractory state, Pr ,

which cannot respond to the stimulus and transitions back to Pi.

WeconcatenatedP to an IFFmotif ofmodification-demodification

cycles to form a RIFFmodel (Figure 4B). We further reasoned that

cell-surface receptors also trigger cascades of downstreamPTM,

such as the highly conserved mitogen-activated protein (MAP) ki-

nase cascades, which are known to be implicated in synaptic

memory.55 These cascades can feedback on the receptor to alter

its behavior. Accordingly, we also considered a concatenation of

P with a cascade of three modification-demodification cycles that

negatively feeds back on P (R3MD, Figure 4C) to enhance entry to

its refractory state. The R3MDmodel is different from the others in

being cyclic.

It is interesting to reason about how these models might

behave under repetitive stimulation, in the light of our findings

for the CIFF model. If habituation were to be found, we expected
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that thememory variables would act to reduce the response vari-

ables. Thesememories are denotedM in Figure 4. For the recep-

tor-based models, the refractory state, Pr , acts implicitly to

reduce the activated state of the receptor, which is the output

to the second motif; therefore, we expected that Pr would also

act as a memory variable. Because R3MD is cyclic, it was not

immediately clear which variable should be considered as the

response and expected to habituate. The activated state of the

receptor, Pa, seemed like a reasonable guess because it con-

nects P to the cascade. Here, both memory variables act to

reduce Pa.

We subjected each of these three other models to the same

process of evolutionary optimization described above for the

CIFF model and were able to find in each case parameter sets

that exhibited all seven of the single-stimulus hallmarks of habit-

uation. The results are shown in Figures S1 and S2 (CNF), S3

and S4 (RIFF), and S5 and S6 (R3MD), with the corresponding

parameter ranges and the parameter set with the lowest cost-

function value shown in Tables S2 (CNF), S3 (RIFF), and S4

(R3MD). The memory variables were as we had predicted. Strik-

ingly, the same crucial features of timescale separation and

reversal for the memory variables, which we noted above for

the CIFF model, were found to hold for all three models in

Figure 4.

Robustness of the response
A single parameter set defines only one point in a high-dimen-

sional parameter space. Because our results were found through

random sampling, it is clear that the region of parameter space

that supports the hallmarks found here must necessarily contain

an open subset of the high-dimensional space of parameters. If

not, the probability of finding points in the region by sampling

would be zero. This in itself is a sign of parametric robustness.

However, it is not clear whether the region of parameter space

is tiny or extensive nor what kind of shape it has. Such ‘‘param-

eter geography’’ is not straightforward to undertake in general-

ity.56 We therefore performed single-parameter sensitivity anal-

ysis by independently multiplying each parameter by 10a,

where a was drawn randomly from the uniform distribution on

½ �1; 1�, keeping all other parameters fixed at their identified

values, and then testing for habituation with frequency and inten-

sity sensitivity. These are the principal hallmarks from which the

others follow, as noted above. The results are shown in

Figures S7 (CIFF), S8 (CNF), S9 (RIFF), and S10 (R3MD). As ex-

pected for such analyses, some parameters had to be main-

tained within much smaller ranges than others. The CNF model

had generally broader ranges and less disparity in ranges be-

tween parameters, whereas the RIFF model is much the oppo-

site. However, all models exhibited reasonable robustness to

parametric variation.

DISCUSSION

The question of learning outside of animals with brains has been

fraught with controversy, which often appears, in historical

perspective, to have been as much ideological as scienti-

fic.16,57,58 It is only recently that renewed interest in the question

has arisen.17–22 Learning may occur at many biological scales,
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Figure 4. Other models that exhibit the hallmarks of habituation

(A) Concatenated NF (CNF) network, in which each node in Figure 1B corresponds to a modification-demodification cycle. See also Figures S1, S2, and S8 and

Table S2.

(B) Receptor motif (P), consisting of a cycle of three states, as discussed in the text, concatenated to an IFF motif (RIFF). See also Figures S3, S4, and S9 and

Table S3.

(C) Receptor motif (P), concatenated to a cascade of three modification-demodification cycles (R3MD) that negatively feeds back on the receptor.

See also Figures S5, S6, and S10 and Table S4.
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but the cell is the unit of life, and we have focused here on habit-

uation, typically regarded as the simplest form of learning, in sin-

gle cells.

There is compelling experimental evidence for single-cell

habituation in limited contexts. Habituation was well estab-

lished many years ago in the ciliate Stentor coeruleus by Da-

vid Wood,53,50 building on the pioneering work of Herbert

Spencer Jennings,4 and these experiments have now been

replicated with modern techniques by Wallace Marshall.26

Because a single-cell organism must solve the same survival

problems as any organism, in a world of ‘‘blooming, buzzing

confusion,’’59 it may seem reasonable that evolution provided

it with elementary forms of learning that are similar to those

used by animals. Indeed, from an evolutionary perspective,

we may even speculate that it was the former that gave rise

to the latter.60

Learning in single cells that are components of multi-cellular

organisms is not obviously supported by this evolutionary ratio-

nale. Indeed, in adult animals, homeostasis is believed to main-

tain the constancy of the internal milieu, whereas the prevailing

metaphor for animal development has been the operation of a

program encoded in genomic DNA. The experiments undertaken

in mammalian PC12 cells by Dan Koshland are therefore espe-

cially significant because they confirm habituation of noradrena-

line secretion to multiple stimuli along with several of the hall-

marks. Koshland’s analysis was undertaken in full awareness

of, and by analogy to, contemporary work on learning in animals.

His earlier review of bacterial chemotaxis ‘‘in relation to neurobi-

ology’’61 ends with the declaration that ‘‘enzymology recapitu-

lates neurobiology.’’ To our knowledge, Koshland’s work has

been the only systematic evaluation of habituation in single

mammalian cells. In view of its importance and its subsequent

invisibility in the literature, we have summarized this body of

work in Table S5, showing in which papers the evidence for

the tested hallmarks may be found.

Koshland was a pioneer not only in studying habituation in

single cells but also in bringing mathematical analysis to bear

on biochemistry (as, for example, in Goldbeter et al.39). It is sur-

prising that his only published attempt to model habituation62

was limited to a scheme of receptor inactivation, resembling

our P motif (Figures 4B and 4C) but without the state Pi. It is

not difficult to see that this shows an exponentially declining

response to repetitive stimulation, as in Figure 1A. None of

the other hallmarks were tested, nor would we expect, from

our findings, that they would have been found (with the possible

exception of recovery).

Koshland’s model was limited, but it was grounded in the

biochemistry and enzymology to which he himself had contrib-

uted. We have followed his example by formulating mathemat-

ical models built upon the biochemistry of PTM. The potential

to modify the states of an individual protein molecule ‘‘on the

fly,’’ as part of a cell’s response to its environment, has always

suggested substantial capabilities for information processing,43

which have been strengthened by the links between PTM and

short-term forms of memory.52 We have followed Koshland

again in exploiting cycles of PTM and demodification, whose

sensitivity properties he helped to explicate.39 PTM cycles

form the component nodes in the three motifs, NF, IFF, and P,

which we have considered here.

The NF and IFF motifs (Figures 1B and 1C) characteristically

arise in random sampling of small networks that exhibit adapta-

tion.31,32 As mentioned in the introduction, adaptation and habit-

uation both rely on some form of response downregulation. The

receptor motif, P, is also known to exhibit adaptation through

state-dependent inactivation,36 and, as we found, it too exhibits

habituation (hallmark #1). This suggests that adaptation and

habituation are related to each other, although no mathematical

explanation has been found for such a relationship. The IFF and

NF motifs exhibit several of the other hallmarks of habituation33

(we did not test the P motif), but we were never able to find re-

gimes that showed frequency sensitivity (#4). To address this,

we have built on Staddon’s insight into the impact of serial link-

age34 to analyze four concatenated models based on these mo-

tifs (CIFF, CNF, RIFF, and R3MD), which have yielded several

interesting conclusions.

First, as just noted, although it is not difficult to show habitua-

tion (#1) and also recovery (#2), it is harder to show frequency

sensitivity (#4). This suggests that merely exhibiting the declining

response in Figure 1A should not be taken as adequate evidence

of habituation. Many networks may show this behavior without

having all the hallmarks. Second, the critical hallmarks appear

to be frequency sensitivity (#4) and intensity sensitivity (#5). We

had to use an evolutionary optimization algorithm to find param-

eter sets that satisfied these two hallmarks, but, once we had,

the remaining hallmarks emerged for free, without the need for

any further parameter searching. Third, the parameter optimiza-

tion invariably leads to the distinctive properties of timescale

separation and reversal. Each model has two memory variables.

The decay time of one of them is much longer than that of the

other (timescale separation), and they respond in opposite

ways to increasing frequency at fixed intensity (reversal). This

reversal is not seen with increasing intensity at fixed frequency.

Staddon had noted the significance of timescale separation

but not that of reversal, which, nevertheless, we found to also

be true of his model.

It is striking that all our models exhibit both timescale separa-

tion and reversal, despite the corresponding parameter sets be-

ing found independently by a randomized search algorithm. This

strongly suggests that they play a crucial role in giving rise to the

hallmarks. In our models, they explain frequency and intensity

sensitivity, whereas timescale separation, in the guise of the

slow decay and persistence of the second memory variable, ex-

plains potentiation of habituation and subliminal accumulation

(#3 and #6). Long-term habituation (#10) is more ambiguous,

for reasons noted above. In our models, it occurs within the re-

covery time, where it is no different to potentiation. This suggests

that the kinds of long-term memory that have been found exper-

imentally, which can last for days,52 may reflect the biochemistry

of transcription, translation, and epigenetics,63 rather than that of

signaling and PTM. If so, this may indicate a third timescale of

habituation, beyond that which gives rise to potentiation. Models

that can represent these other biochemical processes may help

resolve this interesting point. We note, however, that there has

been no experimental hint of a longer timescale of days in single

cells.

Our results offer a partial strategy for experimental identifica-

tion of molecular networks underlying proper habituation, in

which the hallmarks in Table 1 are satisfied. First, the relationship
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between adaptation and habituation suggests looking for

network motifs that show adaptation, such as the NF, IFF, and

P motifs. Random sampling of small networks has repeatedly

uncovered the NF and IFF motifs,31,32 suggesting that there

are relatively few small networks that robustly exhibit adaptation.

Second, concatenation of such motifs appears to be needed to

achieve frequency sensitivity. However, this hallmark also re-

quires timescale separation, with the emergence of two memory

variables that decay at markedly different timescales, which

would be harder to confirm experimentally. Interventions that

perturb timescale separation may still be informative, if they

diminish or abolish frequency sensitivity. The NF and IFF motifs

can be experimentally distinguished.64 It would be interesting if

such methods of cellular interrogation65 could be enhanced to

distinguish different molecular networks for habituation.

Two broad theories have emerged to account for habituation.

The dual-process theory of Thompson and colleagues sees

habituation and its counterpart, sensitization, as processes

that compete with each other.66 This competition is reflected in

the IFF and NF motifs (Figures 1B and 1C), where I activates

the response R, whereasM inactivates R. The response is deter-

mined by the competition between these processes. Depending

on the parametric settings and the stimulation regime, we can

readily find sensitization, in which the response increases with

repeated stimulation. Indeed, we had to filter out sensitization

to find habituation in our parametric search (STAR Methods).

To put it another way, had we searched for sensitization, or for

a mixture of both sensitization and habituation, we would prob-

ably have found them. Our models thereby reflect the competi-

tive aspect of dual-process theory but without needing separate

processes of habituation and sensitization.

The other broad theory, which goes back to Sokolov29 and has

been particularly developed by Allan Wagner,67 sees learning as

the formation of an internal representation, or memory, in which

habituation may play a part, along with other forms of learning,

such as conditioning, which involve multiple stimuli. The internal

representation is reflected in our models by the memory vari-

ables, M1 and M2. As long as M2 is present at a non-zero level

before the recovery time has elapsed, there is a long-term mem-

ory that can be elicited through potentiation. The issue of multi-

ple stimuli arises for hallmarks #7 to #9. It would be interesting to

incorporate a wider context of multiple stimuli into our models,

but this must be left to future work.

The two broad theories described above bear on a further

issue mentioned in the introduction. The perspective of habitua-

tion that comes from cognitive science is rather different from

that which comes from neuroscience, as expressed by Rankin

et al.14 and the hallmarks in Table 1. The issues are clearly

described in Colwill et al.15 The central claim from cognitive sci-

ence is that the neuroscience view of habituation confuses the

distinction between learning, considered as the formation of an

internal representation, and performance, which elicits evidence

for that representation. The internal representation of repetitive

stimulation should therefore be assessed separately from the

observed decline in response (Figure 1A). Older work of Wagner

and colleagues on the acoustic startle response in rats is high-

lighted to show that, by using a separate test framework post-

habituation, changes of frequency and intensity lead to opposite

responses to those described in Table 1 (Figures 1B and 5 in Col-

will et al.15). Here, following habituation, the system is allowed to

recover for some time, and then a common test stimulus is

applied across all habituating regimes. The response is found

to be stronger for systems habituated under higher frequency

or lower intensity, in contrast to the responses during the habit-

uation protocol, which are weaker under higher frequency or

lower intensity. Following Wagner, cognitive scientists consider

the post-habituation test as more informative of the internal rep-

resentation and the extent of learning that has occurred.

The relationship between learning and internal representation

and the need to distinguish learning from performance seemed

compelling to us.44We also noted that post-habituation recovery

after testing for frequency sensitivity showed behavior similar to

that described in Colwill et al.15 (Figure 2D). We therefore

decided to test our models in the way suggested. Figure 5 shows

that the CIFF model exhibits the opposite behavior described in

Colwill et al.15 (frequency change shows the same behavior
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Figure 5. Frequency and intensity sensitivity

for the CIFF model

This figure uses the separate test framework

advocated in Colwill et al.15 and discussed in the

text.

(A) The left-hand plot shows habituation to different

frequencies at fixed intensity, following Figure 2B.

Note that stimuli are applied until both frequencies

have habituated. A test stimulus at the same in-

tensity is then applied at different times post-

habituation and the response is measured (right-

hand plot). ‘‘x’’ marks the response at the end of

habituation. The response is less with lower fre-

quency except for shortly after habituation.

(B) The left-hand plot shows habituation to different

intensities at fixed frequency, following Figure 3A,

with stimulation continued until both intensities

have habituated. Testing was then done as in (A) at

the highest intensity of 30. The response is less with

greater intensity of the habituation stimulus at all

test times.
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shortly after habituation, but this changes subsequently). Note

that in Figure 5, stimulation is continued until habituation has

been achieved in all conditions, whereas in Figure 2D, stimula-

tion is halted in each condition after habituation is achieved.

It is not difficult to see from our model why the behavior in Fig-

ure 5 should be expected. It hinges on the level of M2. With

frequency change at fixed intensity, M2 is lower for higher fre-

quency due to reversal (Figure 2C) and stays lower post-habitu-

ation, so that the test response is higher.With intensity change at

fixed frequency, where there is no reversal, M2 is higher for

higher intensity (Figure 3B) and stays higher post-habituation,

so that the test response is lower. This shows that, in the setting

of our models for the cellular context, the discord between the

two views of habituation is easily reconciled. They are both

correct.

This last observation illustrates some of the benefits of study-

ing learning in single cells. It may be simpler than in animals with

central nervous systems (although our knowledge of the actual

ecological complexities encountered by cells in their natural en-

vironments remains slight, at best), but this simplicity brings with

it considerable benefits. Wemay be able to determine the under-

lying molecular mechanisms and understand how and why they

work, as suggested by our mathematical models. Moreover,

modern work in a variety of animal models has uncovered sur-

prising complexity in the underlying mechanisms of habituation,

leading one recent perspective to ask ‘‘why is the simplest form

of learning so complicated?’’68 The cellular level may enable this

conundrum to be more readily addressed. We hope that such

opportunities will encourage others to bring cognitive science

to bear on the biology of the cell.44,69,70 There is still much to

be learned by studying learning in single cells.
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STAR+METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Mathematical models
Models are implemented as systems of ordinary differential equations (ODEs), shown below, following the reaction schemes in Fig-

ure 1D (CIFF) and Figure 4 (CNF, RIFF, R3MD), and as described in the text. The dynamical variables are the active forms of each

molecular species, named as in the Figures, with names signifying the ‘‘active fraction’’, or the concentration of the active form, rela-

tive to the total concentration of that molecular species. We take those total concentrations to each be 1, which specifies the unit of

concentration. Accordingly, the termM1 below denotesM1;a=ðM1;i +M1;aÞ. Unless indicated otherwise, subscripts 1 and 2 refer to the

respective motifs in the model, ki are the reaction rates, and Ki are the Michaelis-Menten constants, again normalised to the total

concentration of the corresponding substrate. The repetitive stimulus (Figure 1A) is denoted by SQWðtÞ. We use _x to stand for

dx=dt.

CIFF model, Figure 1D:

_I1 = SQWðtÞ 3 kIa1ð1 � I1Þ � kIi1I1

_M1 = I1 3 kMa1ð1 � M1Þ � kMi1M1

_R1 = I1 3 kRa1ð1 � R1Þ � M1kRi1
R1

K1+R1

_I2 = R1 3 kIa2ð1 � I2Þ � kIi2I2

_M2 = I2 3 kMa2ð1 � M2Þ � kMi2M2

_R2 = I2 3 kRa2ð1 � R2Þ � M2kRi2
R2

K2+R2

CNF model, Figure 4A:

_I1 = SQWðtÞ 3 kIa1ð1 � I1Þ � kIi1I1

_M1 = R1 3 kMa1ð1 � M1Þ � kMi1M1

_R1 = I1 3 kRa1ð1 � R1Þ � M1kRi1
R1

K1+R1

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Software and simulation output This paper https://doi.org/10.5281/zenodo.14053864

Software and algorithms

Paradiseo Dreo et al.49 N/A

Scripts for running simulations and analyzing results This paper https://github.com/theobiolab/habituation.git
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_I2 = R1 3 kIa2ð1 � I2Þ � kIi2I2

_M2 = R2 3 kMa2ð1 � M2Þ � kMi2M2

_R2 = I2 3 kRa2ð1 � R2Þ � M2kRi2
R2

K2+R2

RIFF model, Figure 4B:

_Pr = kaPa � krPr

_Pi = krPr � SQWðtÞ3 kiPi

_Pa = SQWðtÞ3 kiPi � kaPa

_I2 = Pa 3 kIa2ð1 � I2Þ � kIi2I2

_M2 = I2 3 kMa2ð1 � M2Þ � kMi2M2

_R2 = I2 3 kRa2ð1 � R2Þ � M2kRi2R2

R3MD model, Figure 4C.

_Pr = kaPa + kFBM2Pa � krPr

_Pi = krPr � SQWðtÞ3 kiPi

_Pa = SQWðtÞ3 kiPi � kFBkaPa

_I2 = Pa 3 kIa2ð1 � I2Þ � kIi2I2

_R2 = I2 3 kRa2ð1 � R2Þ � kRi2R2

_M2 = R2 3 kMa2ð1 � M2Þ � kMi2M2

Model simulations and habituation protocol
We numerically integrated the ODEs described above in both Python and C++, to cross-check the accuracy of the solutions. In Py-

thon, we used the odeint routine from Scipy.71 In C++, we used the runge_kutta4 function from Boost’s odeint library,72 which we

executed with a step size of 0.001. We assume the model starts with all species inactive. In order to reduce numerical inaccuracies

that can arise because of the discontinuous nature of SQWðtÞ (Figure 1A) the time intervals in which the stimulus was on or off were

integrated consecutively, using the final values of the preceding time interval as the initial conditions for the next interval. In Python,

for each interval, integration was initially performedwith a relatively largemaximum step size of 10� 2 whichwas successively lowered

down to 10� 6 in case of integration failure.
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As explained in the main text, we developed an algorithm to extract the sequence of peaks and troughs of the simulation output as

local maxima and minima, respectively, of the trajectory of the output response. We then filtered the sequence of peaks and troughs

to identify habituating trajectories. The filter conditions, listed below, were developed after substantial trial and error exploration to

rule out various unusual trajectories.

1) The array of peaks must not be empty.

2) The highest peak must not be found later than the third position. This allows for some sensitisation for the very first stimuli (dis-

cussion).

3) The first peak must not be much lower than the highest peak: the former should not be less than 50% of the latter.

4) All peaks after the highest peak must be monotonically decreasing.

5) There must be at least two peaks after the highest peak.

6) There must be a substantial difference between the highest and the lowest peak: the latter should be no more than 80% of the

former.

7) There must be a substantial peak to trough difference for the first few peaks, with the relative difference, normalised to the

maximum peak height, satisfying

peak � trough

maxðpeakÞ > 0:05:

This excludes dynamical trajectories that are too smoothly varying.

8) Troughs must not be too high: not higher than 60% of the highest peak.

9) The last trough must be almost zero: not higher than 2% of the highest peak.

10) The number of high troughs should be limited, with no more than 5 troughs being higher than 10% of the highest peak.

At each stimulus, we tested whether or not the system had habituated, as explained in the main text, and, if it had, we terminated

simulation at that point. We rejected parameter sets that did not habituate within 50 stimuli. The results shown in the paper and the

supplemental information were obtained in both Python and C++ to double check the habituation (ht) and recovery times (rt).

Parameter searching
Given amodel, wewere able to identify a region of parameter space in which habituation typically occurs. To do this, we first manually

located parameter ranges in which habituation sometimes occurred. We then took pairs of parameters and iteratively constrained

their corresponding ranges so that habituation progressively occurred with greater frequency. After some exploration, we were

able to identify parameter ranges in which habituation typically occurred. The corresponding ranges are shown for each model in

Table S1 (CIFF), S2 (CNF), S3 (RIFF) and S4 (R3MD).

We exploited the habituating region of parameter space to find parameter sets that exhibit frequency and intensity sensitivity. To do

this, we minimised the cost function described in Equation 1, using ParadisEO,49 an object-oriented framework for designing meta-

heuristics for evolutionary optimisation, based on the Evolving Objects (EO) C++ library.73 We used the evolution strategy with self-

adaptive mutation algorithm offered by ParadisEO. This algorithm is executed through a C++ source-code file, ESEA.cpp, in which

cost-function values evaluated by our C++ code are made available for optimisation. The algorithm broadly works as follows; for

more details see Lesson 4 of the tutorial on the EO website at eodev.sourceforge.net. We used default settings for the hyperpara-

meters, except for the population size, which we set to 10 to reduce the overhead of cost-function calculation. An initial population

of 10 ‘‘genotypes’’ was selected by independently choosing parameter values from the uniform distributions on the ranges. An addi-

tional parameter, which will be treated as the standard deviation, s, of a normal distributionN ðm; sÞwith meanm, was added to each

genotype with initial value s = 0:3. It is this genotype extension that makes the algorithm ‘‘self adaptive’’. Two parents were selected

by randomly choosing two pairs of genotypes and selecting in each pair the genotype with the lowest cost-function value. Two chil-

dren were generated from the two parents by a combination of ‘‘crossover’’, which happens with probability 0.6, followed by ‘‘mu-

tation’’, which happens with probability 0.1. Crossover merely exchanges the actual parameter values, while the two standard de-

viations, s1 and s2, are replaced by two random points in the interval between them: as1 + ð1 � aÞs2, where a is drawn

independently from the uniform distribution on ½0;1�. The actual parameters weremutated by replacing each valuewith another drawn

from N ðp;sÞ, where p is the parameter value and s is the standard deviation of that genotype. The standard deviation, s, of each

genotype was mutated to s expðaÞ, where a is randomly drawn from N ð0; 1Þ. This process was repeated with more parents to

generate a new population of 10 children. The algorithm was run for 200 generations. The lowest-cost parameter sets are shown

in Tables S1 (CIFF), S2 (CNF), S3 (RIFF) and S4 (R3MD).
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Figure S1: Frequency sensitivity for the CNF model in Figure 4A. Related to Figure 4. The panels are organized as
described in Figure 2. The corresponding parameter set is given in Table S2.
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Figure S2: Intensity sensitivity, potentiation and subliminal accumulation for the CNF model in Figure 4A. Re-
lated to Figure 4. The panels are organized as described in Figure 3. The corresponding parameter set is given in
Table S2.
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Figure S3: Frequency sensitivity for the RIFF model in Figure 4B. Related to Figure 4. The panels are organized as
described in Figure 2. The corresponding parameter set is given in Table S3.
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Figure S7: Sensitivity analysis for the CIFF model in Figure 1D. Related to Figure 1. The corresponding parameter
set, whose values give the baseline for the perturbations, is shown in Table S1. See the Methods for details.
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Figure S8: Sensitivity analysis for the CNF model in Figure 4A. Related to Figure 4. The corresponding parameter
set, whose values give the baseline for the perturbations, is shown in Table S2. See the Methods for details.
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Figure S9: Sensitivity analysis for the RIFF model in Figure 4B. Related to Figure 4. The corresponding parameter
set, whose values give the baseline for the perturbations, is shown in Table S3. See the Methods for details.
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Figure S10: Sensitivity analysis for the R3MD model in Figure 4C. Related to Figure 4. The corresponding param-
eter set, whose values give the baseline for the perturbations, is shown in Table S4. See the Methods for details.



Parameter Search range Best solution
kIa1 [0.01; 0.25] 0.023
kIi1 [30.0; 50.0] 34.44
kMa1 [8.0; 20.0] 17.71
kMi1 [0.01; 0.1] 0.0382
kRa1 [57.0; 80.0] 57.92
kRi1 [1.00; 2.10] 1.39
K1 [0.00025; 0.002] 0.000534
kIa2 [0.012; 0.12] 0.0160
kIi2 [0.873; 20.0] 14.3
kMa2 [2.52; 20.0] 4.34
kMi2 [0.001; 0.01] 0.00147
kRa2 [1.976; 49.7] 26.2
kRi2 [12.77; 49.7] 45.99
K2 [0.75; 2.0] 0.791

Table S1: Parameter values of the CIFF model in Figure 1D for the stimulation regimes shown in Figures 2B and
3A. Related to Figures 2 and 3.



Parameter Search range Best solution
kIa1 [0.0225; 0.0235] 0.023
kIi1 [30.0; 50.0] 33.97
kMa1 [0.04; 0.076] 0.049
kMi1 [0.02; 0.046] 0.0211
kRa1 [5.80; 15.90] 7.74
kRi1 [15.40; 35.50] 18.19
K1 [0.00025; 0.002] 0.000691
kIa2 [0.03; 0.06] 0.0373
kIi2 [14.0; 37.0] 15.94
kMa2 [0.5; 2.03] 1.026
kMi2 [0.00014; 0.0018] 0.000423
kRa2 [4.71; 18.8] 7.51
kRi2 [12.77; 49.7] 22.39
K2 [0.5; 1.58] 1.147

Table S2: Parameter values of the CNF model in Figure 4A for the stimulation regimes shown in Figures S1A and
S2A. Related to Figures 4, S1 and S2.

Parameter Search range Best solution
ka [0.1; 5.0] 1.497
kr [0.001; 0.01] 0.00830
ki [0.01; 1.0] 0.1255
kIa2 [0.012; 0.12] 0.01519
kIi2 [0.1; 20.0] 11.20
kMa2 [2.52; 20.0] 7.65
kMi2 [0.0001; 0.01] 0.00079
kRa2 [1.976; 49.7] 25.96
kRi2 [12.77; 49.7] 36.52

Table S3: Parameter values of the RIFF model in Figure 4B for the stimulation regimes in Figures S3A and S4A.
Related to Figures 4, S3 and S4.

Parameter Search range Best solution
ka [0.1; 5.0] 0.773
kr [0.01; 0.5] 0.1046
ki [0.01; 1.0] 0.1236
kFB [0.01; 1.0] 0.9039
kIa2 [0.012; 1.5] 1.033
kIi2 [0.1; 20.0] 5.046
kRa2 [0.1; 2.0] 1.002
kRi2 [0.1; 10.0] 5.757
kMa2 [1.0; 5.0] 2.52
kMi2 [0.0001; 0.001] 0.000594

Table S4: Parameter values of the R3MD model in Figure 4C for the stimulation regimes in Figures S5A and S6A.
Related to Figures 4, S5 and S6.



# Hallmarks Stimulus Comments
1 Habituation K+ S1,S2

AChS2,S3,S4

ATPS4,S5

2 Spontaneous recovery K+ S1 Only partial recovery.
AChS2,S3,S4 Only partial recovery.
ATPS4

3 Potentiation of habituation K+ S1

AChS2,S3,S4

ATPS4

4 Frequency sensitivity K+ S1 Stronger habituation for higher fre-
quencies. Recovery was not tested.
Data has been normalized.

AChS3 Normalized data. Peaks have not fully
habituated. Recovery was not tested.

ATPS5 Normalized data. Peaks have not fully
habituated. For higher frequencies ha-
bituation is more pronounced and more
rapid. Recovery was not tested.

5 Intensity sensitivity ATPS5 Normalized data (Figure 1). Indirect
evidence by analogy between habitua-
tion and adaptation (Figure 3).

6 Subliminal accumulation Not reported.
7 Stimulus specificity K+ / AChS2,S3 Independent habituation.

ATP / K+ S5 Stimulus generalization.
8 Dishabituation K+S1 Bay K8644 and phorbol esters used as

dishabituating stimuli.
AChS3 Phorbol esters do NOT result in disha-

bituation to ACh stimuli.
9 Habituation of dishabituation Not reported.
10 Long-term habituation Not reported.

Table S5: Summary of Koshland’s work on habituation of noradrenaline secretion to multiple stimuli in PC12
cells. Tested stimuli were acetycholine (ACh), adenosine triphosphate (ATP) and ionic potassium (K+). Adapted
with permission from Table 6 of citation S6 and related to Table 1.
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