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ABSTRACT Switch-like motifs are among the basic building blocks of biochemical networks. A common motif that can serve
as an ultrasensitive switch consists of two enzymes acting antagonistically on a substrate, one making and the other removing a
covalent modification. To work as a switch, such covalent modification cycles must be held out of thermodynamic equilibrium by
continuous expenditure of energy. Here, we exploit the linear framework for timescale separation to establish tight bounds on the
performance of any covalent-modification switch in terms of the chemical potential difference driving the cycle. The bounds apply
to arbitrary enzyme mechanisms, not just Michaelis-Menten, with arbitrary rate constants and thereby reflect fundamental phys-
ical constraints on covalent switching.
SIGNIFICANCE A common motif in the chemistry of living cells consists of one enzyme that modifies another molecule
and another enzyme that removes the modification. By continuously expending energy, these seemingly futile cycles can
serve as sensitive switches in biological circuits, allowing cells to amplify external signals and make decisions. However,
basic questions about the role of energy expenditure remain open. How much energy must living things consume to make
a good switch, and does energy limit sensitivity? In this work, we answer these questions by finding the ultimate limits, set
by thermodynamics, on the switching performance of modification cycles and describe the rules for making these simple
nonequilibrium response elements as sensitive as possible.
INTRODUCTION

The covalent modification cycle is a ubiquitous motif in
biochemical networks. In this motif, a forward modifying
enzyme, E, covalently attaches a modifying group to a sub-
strate, S, thereby converting it from an unmodified state, S0,
to a modified state, S1, and a reverse demodifying enzyme,
F, removes the modifying group, converting S1 back to S0
(Fig. 1 a). Phosphorylation is one the best known forms of
covalent modification, but many others are known (1–3),
and new forms of modification continue to be uncovered
(4). The substrate, S, may be a protein, in which case mod-
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ifications are referred to as posttranslational modifications,
but they may also occur on small molecules. For the modi-
fication cycles considered here, the modifying group is a
small chemical moiety obtained from a donor, such as a
phosphate group obtained from ATP. Polypeptide modifica-
tions, such as ubiquitin, require a more complex cascade of
enzymes for covalent attachment to their substrates and fall
outside the scope of this article.

The antagonistic structure of covalent modification cycles
was difficult to understand at first—why simultaneously
attach a modifying group and also remove it?—and led to
them being referred to in the older literature as ‘‘futile cy-
cles’’ (5). In fact, the forward and reverse enzymes allow
the balance of S1 and S0, measured, for instance, by the ratio
of their steady-state concentrations, ½S1�=½S0�, to be main-
tained away from the value it would have at chemical equi-
librium. In other words, a covalent modification cycle can
act as a switch (Fig. 1 b) in which the value of ½S1�=½S0� is
modulated by changing the levels of the forward or reverse
enzymes (6,7). The idea of a biochemical switch becomes
more natural in the context of cellular information process-
ing, and such switches have been found to play key roles in
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FIGURE 1 Covalent modification cycle. (a) Sche-

matic of a phosphorylation-dephosphorylation cycle

in which kinase E modifies the substrate S by cova-

lent addition of a phosphate group (brown disc),

donated by ATP, and phosphatase F removes the

modification by hydrolysis to release inorganic phos-

phate, Pi. S0 and S1 denote the unphosphorylated and

phosphorylated forms of S. (b) Covalent modifica-

tion gives rise to a switch-like relationship between

the total amounts of enzymes, here of the kinase E,

and the steady-state substrate concentrations, which

we quantify as illustrated by the sensitivity and dy-

namic range. To see this figure in color, go online.
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signal transduction (8–11), gene regulation (12,13), the cell
cycle (14,15), and metabolism (16,17).

The operation of a covalent modification cycle relies on
the continued presence of donor molecules to provide modi-
fying groups. The cycle is driven by the chemical potential
difference between the donor molecules, such as ATP, and
the corresponding molecular residues after modification
and demodification, such as ADP and inorganic phosphate
(Pi). This chemical potential difference is maintained by
core metabolic processes within the cell. It is akin to a bat-
tery in an electronic circuit, and a modification cycle
thereby operates away from thermodynamic equilibrium
through continuous dissipation of energy (18,19).

In seminal work, Goldbeter and Koshland performed a
mathematical analysis of covalent modification cycles under
the assumption of Michaelis-Menten kinetics for the modi-
fying enzymes—catalysis proceeds via a single intermediate
enzyme-substrate complex, and product formation is irre-
versible (6). The chemical reactions are

Eþ S0#ES/Eþ S1
Fþ S1#FS/Fþ S0

; (1)

where ES and FS are enzymatic intermediates. When sub-
strate is relatively abundant so that both enzymes are satu-

rated, they found that this system can exhibit unlimited
sensitivity to the concentrations of the modifying enzymes.
For example, the logarithmic sensitivity,

vlogð½S1�=½S0�Þ
vlog Etot

; (2)

which we refer to hereafter as the sensitivity, can be made as
large as desired by varying rate constants. By way of com-

parison, if the relationship between ½S1�=½S0� and Etot was
imagined to be a Hill function, xH=ð1þxHÞ, then the
maximum sensitivity would be the Hill coefficient H. A
sensitivity greater than 1 is said to be ‘‘ultrasensitive’’ (20).

The unlimited sensitivity found by Goldbeter and Kosh-
land is physiologically implausible. It arises from the unre-
alistic assumption of irreversibility in the Michaelis-Menten
reaction mechanism in Eq. 1. Although such an assumption
has been nearly universal in quantitative studies of biochem-
2 Biophysical Journal 122, 1–13, May 16, 2023
ical networks, it would have surprised Michaelis and
Menten (21,22), and its dangers have been repeatedly
pointed out (8,23,24). In their in vitro studies, Michaelis
and Menten measured initial reaction rates, when product
was not present, so that irreversibility was a reasonable
assumption. But, since then, Eq. 1 has been widely used
in contexts, such as modification cycles, in which product
is very much present and rebinding of product to enzyme
is to be expected. Its continuing use has sometimes been
justified on the grounds that modification and demodifica-
tion reactions are often physiologically irreversible in the
sense that product is rarely converted back into substrate.
However, enzyme mechanisms typically involve greater
complexity than the simple Michaelis-Menten mechanism,
with multiple intermediates and routes (25), and they may
be physiologically irreversible despite product rebinding.
The graph-theoretic linear framework for timescale separa-
tion (26) allows realistic general reaction mechanisms to be
analyzed in which such distinctions can be made. In previ-
ous work, we have analyzed modification cycles with real-
istic enzyme mechanisms and derived formulas for their
switching capability in the limit of high substrate (16,27).
The switching sensitivity is no longer unbounded but is
now limited by the parameters of the switch.

A further difficulty with the irreversibility of Eq. 1 is that it
implies infinite entropy production. In reality, every reaction is
reversible, although physiological conditions may make the
reverse rate extremely low. Aswewill see below, it is the ratio
of forward to reverse rates that yields the finite rate of entropy
production. The Michaelis-Menten mechanism is therefore
unsuitable for a thermodynamic analysis. Noting this, Qian
(19) studied a minimal elaboration of the Goldbeter-
Koshland cycle in which both enzymes follow a fully revers-
ibleMichaelis-Mentenmechanism. This mechanism still pro-
ceeds via a single intermediate complex, but product can
rebind. Qian found the relationship between the chemical po-
tential difference driving the cycle andfigures ofmerit, such as
the sensitivity, of a switch based on the system.

In the linear framework, realistic enzyme mechanisms can
be analyzed with reversibility assumed throughout. We use
this approach here to establish bounds on the switching dy-
namic range and sensitivity (Fig. 1 b) of any covalent
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modification cycle in which the forward and reverse enzyme
each follow their own realistic enzyme mechanism. We also
show explicitly that these thermodynamic bounds can be ap-
proached as closely as desired.Ourwork generalizes the anal-
ysis of Goldbeter and Koshland (6,18) and the subsequent
work of Qian (19,28) and reveals fundamental physical con-
straints free from restrictive enzymological assumptions.
RESULTS

Covalent modification cycles

For the present purposes, a covalent modification cycle is
any chemical reaction network with mass action kinetics,
built out of any number of reactions of the form (27,29)

Eþ S0#ðESÞi
Eþ S1#ðESÞi
ðESÞi#ðESÞj
Fþ S0#ðFSÞi
Fþ S1#ðFSÞi
ðFSÞi#ðFSÞj:

: (3)

Any such network can be viewed as a detailed realization
of the schematic modification cycle illustrated in Fig. 1 a.
This class of models encompasses the irreversible cycle
studied by Goldbeter and Koshland but also much more bio-
chemically realistic ones reflecting complex enzymology,
with any number of intermediates, and, in particular, the
reversibility of enzymes.

The reactions in Eq. 3 imply the conservation of the total
concentration of substrate Stot:

Stot ¼ ½S0� þ ½S1� þ
X
i

�ðESÞi�þX
j

h
ðFSÞj

i
; (4)

as well as the total concentrations of both enzymes, Etot and
Ftot:
Etot ¼ ½E� þ
X
i

�ðESÞi�

Xh i

Ftot ¼ ½F� þ

j

ðFSÞj : (5)

The assumption of mass-action kinetics gives a system of
polynomial differential equations for the time evolution of
the concentration of each chemical species. The equations
are arrived at by summing the individual contributions to
the rate of formation/destruction of each species due to
each reaction.

Given any fixed choice of rate constants and the conserved
quantities Stot,Etot, andFtot, a covalentmodification cycle ad-
mits a unique steady state or dynamical fixed point (16). This
fact allows us to view steady-state quantities, such as the
steady-state value of the ratio ½S1�=½S0�, as functions of the
conserved quantities. For a general covalent modification cy-
cle, the polynomial equations satisfied at steady state, implic-
itly defining this functional relationship, can be very
complicated—having arbitrarily many terms and rate con-
stants appearing in them. Nevertheless, they possess a basic
structure, set by the schema in Eq. 3, that will enable us to
apply a powerful algebraic approach—the linear frame-
work—to make general statements about them.
Background on the linear framework

Here, we briefly introduce the linear framework. In the
following subsection, we will discuss the example of cova-
lent modification cycles. The framework was introduced in
(26). It provides a unified graph-theoretic approach to
analyzing those molecular systems that have been previously
studied by ad hocmethods of timescale separation, including
protein allostery, receptor pharmacology, and gene regula-
tion, as reviewed in (30). Amore recent review (31) discusses
the material needed for the present article and should be con-
sulted for further details and background.

The framework centers on finite, simple, directed graphs
with labeled edges; an example graph is shown in Fig. 2 a.
For the application considered here, the graph vertices,
denoted by 1; 2;/;n, represent chemical species; the edges,
denoted i/j, represent reactions; and the labels, denoted
‘ði/jÞ, represent positive rates with dimensions of
ðtimeÞ� 1. The labels may be algebraic expressions that
include time-varying concentrations of chemical species.
We will discuss such labels further in the next section; in
the present, to explain the machinery of the framework,
we regard the labels as constant symbols.

Let G be a linear framework graph. Such a graph can be
naturally given a dynamics by assuming that each edge is a
chemical reaction with the corresponding label as the rate
constant for mass-action kinetics. Since an edge has only
a single source vertex, the dynamics must be linear and is
therefore described by a matrix differential equation,

dx

dt
¼ LðGÞ$x; (6)

where x ¼ ðx1;/; xnÞT ˛Rn is the time-dependent column
vector of vertex concentrations (here, T denotes transpose)

and the linear operator, LðGÞ, is the Laplacian matrix of
G. Since material is only moved around the graph, without
being created or destroyed, there is a conservation law: at
all times, x1 þ/þ xn ¼ xtot; equivalently, each column
of LðGÞ sums to zero.

We will be concerned with steady states, x�, of systems
described by graphs so that ðdx =dtÞjx¼ x� ¼ 0. Accord-
ingly, x� ˛ ker LðGÞ. It can be shown that if G is strongly
connected, then dim kerLðGÞ ¼ 1. Recall that a graph is
strongly connected if any two distinct vertices, i and j, can
be connected by a directed path, i ¼ i1/i2///ik ¼
j. A canonical basis element rðGÞ˛ ker LðGÞmay be deter-
mined in terms of the edge labels by using the matrix-tree
Biophysical Journal 122, 1–13, May 16, 2023 3
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FIGURE 2 Modeling enzyme mechanisms using the linear framework. (a) An example of a linear framework graph. (b) An example of a realistic enzyme

mechanism, in which two substrates (ATP and S0) bind to an enzyme E in any order to form a ternary complex T, which is transformed into a complex T0 from
which two products (ADP and S1) are released in any order. To be able to model this mechanism using the grammar of Eq. 9, the binding/unbinding of at least

one of the substrates and one of the products to the bare enzyme must come to a rapid equilibrium (denoted by the gray ovals). (c) Subject to this timescale

assumption, the network in (b) can be cast in terms of the grammar of Eq. 9. The details are explained in (16). For example, the reactions between E$ATP and

T are incorporated into the reactions between Eþ S0 and Y2, with the rate of the forward reaction carrying the concentration of ATP. (d) A linear framework

graph GE corresponding to the mechanism shown in (c). Edges whose labels include concentration terms are shown in blue. To see this figure in color,

go online.
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theorem (MTT) of graph theory (32–35). If H is any sub-
graph of G, let wðHÞ denote the product of the edge labels
over the edges in H,

wðHÞ ¼
Y

i/j˛H

‘ði/ jÞ :

Recall that a spanning tree is a connected subgraph of G
that contains each vertex of G (spanning) and has no cycles
if edge directions are ignored (tree). It is said to be rooted at
i if i is the only vertex with no outgoing edge (which orients
the tree). Let QiðGÞ denote the set of spanning trees of G
that are rooted at i. Then, the MTT shows that

riðGÞ ¼
X

T ˛QiðGÞ
wðTÞ : (7)

Since x� must be proportional to rðGÞ˛ ker LðGÞ, it is
straightforward to obtain the ratio of steady states in terms
only of the edge labels,

x�i
x�j

¼
P

Ti ˛QiðGÞwðTiÞP
Tj ˛QjðGÞw

�
Tj

� ; (8)

and we will exploit this below.
4 Biophysical Journal 122, 1–13, May 16, 2023
Modeling a covalent modification cycle

In previous work, posttranslational modification systems,
like the covalent modification cycle of Fig. 1 a, were
modeled as interacting systems of linear framework graphs
(16,27). This approach is also reviewed in (31). An impor-
tant feature of the approach is that enzyme reaction
mechanisms can be substantially more general than the con-
ventional Michaelis-Menten mechanism in Eq. 1, allowing,
in particular, for reversibility and multiple intermediate
complexes and thereby addressing the problems described
in the introduction. Specifically, an enzyme mechanism
may be composed of any appropriate reactions from the
‘‘grammar,’’

Eþ S� / Y� Y� /Y� Y� /Eþ S�; (9)

which transforms between substrate and product. Here,
we have used ‘‘�’’ as a generic subscript to avoid index

proliferation. S� denotes a substrate form, such as S0 or
S1 in Eq. 1, and Y� denotes an intermediate complex,
such as ES in Eq. 1. The only requirement we place on
the mechanism is that there must be no ‘‘dead-end’’
intermediate complexes that can be formed but not de-
stroyed. We will see that this amounts to supposing that
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a certain corresponding graph, described below, is strongly
connected.

The Michaelis-Menten mechanism in Eq. 1, or the
reversible version used by Qian in (19), can be constructed
from the grammar in Eq. 9. But the grammar can also
capture more complicated mechanisms, such as the
‘‘random order bi-bi’’ mechanism (36) pictured in
Fig. 2 b in which an enzyme has two substrates that are
bound in either order and forms two products that are
released in either order. Such mechanisms are important
for forward modifying enzymes, like kinases, which use
a secondary substrate, like ATP, to donate the modifying
group (Fig. 1 a) and release a secondary product, like
ADP. Similarly, the enzyme mechanisms implied by the
covalent modification cycle in Eq. 3 can also be accommo-
dated in Eq. 9.

In order to cast realistic enzyme mechanisms in our
grammar, we must make an approximation because, in
Eq. 9, substrates are not permitted to bind to intermediate
complexes, so secondary substrates cannot be explicitly
represented. Instead, as explained in more detail in (27),
we will assume that secondary-substrate binding occurs
as a ‘‘rapid equilibrium’’ with either the free enzyme E
or some intermediate complex Y� so that the concentration
of the secondary substrate can be absorbed into the appro-
priate rate constant. We additionally assume that the con-
centration of this secondary substrate is held constant—a
reasonable assumption in the case of many forward modi-
fying enzymes, especially kinases, where ATP concentra-
tion is held constant by background metabolic processes
despite fluctuations in demand. Subject to these assump-
tions, the mechanism in Fig. 2 b can be well approximated
by the reaction network shown in Fig. 2 c, which can be
specified by the grammar in Eq. 9.

Any mechanism for an enzyme E expressed in the
grammar may be represented by a linear framework
graph GE (Fig. 2 d), in which the vertices are the free
enzyme E and the intermediate complexes Y�, the edges
correspond to the reactions in the mechanism, and the
labels correspond to the reaction rates. The time-depen-
dent concentrations of the substrate forms S� appear in
the labels for those edges in which a substrate form binds
to the free enzyme. Accordingly, as can be seen in the
example in Fig. 2 d, only those edges outgoing from
the vertex E, which are colored blue, have edge labels
depending on the substrate concentrations. In keeping
with the reversibility of the enzyme mechanism in
Fig. 2 c, every transition in the graph GE in Fig. 2 d is
reversible. We will always require that GE be strongly
connected and in particular that no intermediates form
irreversibly.

The linear Laplacian dynamics on GE, as given by Eq. 6,
is merely a rewriting of the dynamics of the enzyme mech-
anism under mass-action kinetics. But this construction will
allow us to apply the MTT, in the form of Eq. 8, to algebra-
ically express the variables associated with the vertices in
terms of the edge labels.

The general form of the covalent modification cycle in
Eq. 3 can easily be constructed within the grammar in
Eq. 9: it consists of two enzymes, E and F, with arbitrary
mechanisms obeying the grammar of Eq. 9, and two inter-
converting substrate forms, S0 and S1. The reverse modi-
fying enzyme, F, may follow a different mechanism from
that of E. This is typically the case in reality, as the removal
of a modifying group is often a single-substrate hydrolysis
reaction. The ability to realistically represent the difference
between the mechanisms of E and F is an important benefit
of our approach.

Applying the linear framework to a covalent modification
cycle, we get two graphs: GE, whose vertices are E and its
intermediates, and GF, whose vertices are F and its interme-
diates. Since ½S0� and ½S1� appear in the labels of the edges of
GE and GF directed out of E and F, respectively, they will
also appear on the right hand side of Eq. 8, but they do so
in a limited way. Specifically, since each rooted spanning
tree has at most one edge directed out of any vertex, they
appear only linearly. This observation leads to the following
simple relations at steady state (27):

X
i

�ðESÞi�
½E� ¼

½S0�
KE

0

þ ½S1�
KE

1

X
j

h
ðFSÞj

i
½F� ¼

½S0�
KF

0

þ ½S1�
KF

1

; (10)
where K0 ;K1 ;K0 ; andK1 are the total generalized Michae-
lis-Menten constants (tgMMCs) of the covalent modifica-
E E F F

tion cycle (27,29). The tgMMCs depend only on rate
constants and have dimensions of concentration. The spe-
cific algebraic expressions for the tgMMCs in terms of the
rate constants depend on the choice of enzyme mechanism
from the grammar in Eq. 9. An informal explanation of
how the tgMMCs are calculated is given in (31).

Substituting expressions like Eq. 10 into the original poly-
nomial steady-state equations yields a similarly compact
expression for the substrate ratio (Eq. 13; (27)):

½S1�
½S0� ¼ cE0 ½E� þ cF0 ½F�

cE1 ½E� þ cF1 ½F�
; (11)
where the quantities cE0 ; c
E
1 ; c

F
0 ; and c

F
1 are the total general-

ized catalytic efficiencies (tgCEs) of the covalent modi-

fication cycle (27,29). These quantities depend only on
rate constants and have dimensions of ðconcentration�
timeÞ� 1. As with the tgMMCs, the specific algebraic ex-
pressions for the tgCEs in terms of the rate constants depend
on the choice of enzyme mechanism from the grammar in
Eq. 9. An informal explanation of how the tgCEs are calcu-
lated is given in (31).
Biophysical Journal 122, 1–13, May 16, 2023 5
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The three conservation laws and the relations of Eqs. 10
and 11 can now be combined to yield two equations
involving only ½S0� and ½S1� as variables:

Stot ¼ ½S0� þ ½S1� þEtot

� ½S0�
�
KE

0 þ ½S1�
�
KE

1

1þ ½S0�
�
KE

0 þ ½S1�
�
KE

1

�

þ Ftot

� ½S0�
�
KF

0 þ ½S1�
�
KF

1

1þ ½S0�
�
KF

0 þ ½S1�
�
KF

1

�
; and

(12)

�
Etot

�� ½S1� ½S0�
��

E E
�

Ftot

1þ
KF

1

þ
KF

0

c0 ½S0� � c1 ½S1� ¼�
1þ ½S0�

KE
0

þ ½S1�
KE

1

��
cF1 ½S1� � cF0 ½S0�

�
:

(13)

For the purposes of understanding the steady-state depen-
dence of ½S0� and ½S1� on the conserved quantities, all the
possible complexity permitted by the schema in Eq. 3, and
all the freedom to choose rate constants, have been reduced
to eight generalized parameters—the four tgMMCs and the
four tgCEs.
Thermodynamic constraints on the tgCEs

Now, we turn to thermodynamics. We will assume from now
on that every graph is reversible, in the sense that if i/ j,
then also j/i. It is also important that the reverse edge
j/i represents the process that is the time reverse of that
represented by i/j and not just some other process for re-
turning from j to i (37).

At thermodynamic equilibrium, each reaction occurs with
the same frequency as its time reverse. This principle of
detailed balance (38) implies a relation between the rate
constants of reactions that form a cycle. Consider, for
example, an arbitrary cycle of reactions in a covalent modi-
fication cycle taking S0 to S1 via the enzyme E and back to
S0 via the the enzyme F:

S0#
k1½E�

k� 1

ðESÞ1#
k2

k� 2

/#ðESÞn #
kn

k� n½E�
S1#

q1½F�

q� 1

ðFSÞ1#/#
q2

q� 2

ðFSÞm #
qm

q�m½F�
S0:

(14)

For this cycle, detailed balance at thermodynamic equi-
librium implies that

k1k2/q2qm
k� 1k� 2/q� 2q�m

¼ 1: (15)

Recall that some of the rate constants ki; qi appearing
above may conceal concentrations of cofactors we do not
explicitly model. Holding these concentrations at fixed
values away from their equilibrium values drives the system
out of equilibrium into a nonequilibrium steady state. The
log ratio of rates on the left hand side of Eq. 15—known
as the thermodynamic force, or cycle affinity—quantifies
the breaking of detailed balance and can often be identified
6 Biophysical Journal 122, 1–13, May 16, 2023
as the entropy produced in the environment when the cycle
is traversed in units of the Boltzmann constant, kB (39–41).
For a chemical system held out of equilibrium by the pres-
ence of species assumed to have fixed concentration (either
because there is a very large reservoir of them or because a
fixed concentration is actively maintained), this will depend
on a chemical potential difference Dm. For example, sup-
pose E is a kinase and F a phosphatase so that one complete
realization of the cycle entails the binding of one molecule
of ATP, the release of one molecule of ADP, and the release
of one molecule of Pi. Then,

log

�
k1k2/q2qm

k� 1k� 2/q� 2q�m

�
¼ mATP � mADP � mPi

kBT

¼ Dm

kBT
z20 to 30

(16)

under typical physiological conditions. In this work, we
focus on the natural case in which the thermodynamic

force is the same around any cycle in which E makes the
modification of S and F removes it. In that case, we can
show that

log

�
cE0c

F
1

cE1c
F
0

�
¼ Dm

kBT
: (17)

In the general case, where the force is different around
different cycles, the lefthand side is bounded by the largest

force. Without loss of generality, we take cF0=c

F
1 < cE0=c

E
1 so

that Dm> 0.
Equation 17 is the physical constraint on the parameters

of a general covalent modification cycle from which all
our results descend. To prove it, it will be convenient to
consider another kind of linear framework graph, denoted
GSI , whose vertices are the substrate forms and the interme-
diate complexes. GSI is an amalgam of GE and GF together
with the substrate forms S0 and S1 and it is more convenient
for a thermodynamic analysis of the cycle (GSI is distinct
from the graph on the substrate forms introduced in prior
work involving the linear framework (27)). GSI is shown
for an example covalent modification cycle in Fig. 3. GSI

is strongly connected as long asGE and GF are strongly con-
nected, as we assume.

To prove Eq. 17, we begin with Eq. 11 from above, which
says that

½S1�
½S0� ¼ cE0 ½E� þ cF0 ½F�

cE1 ½E� þ cF1 ½F�
¼ cE0 ð½E�=½F�Þ þ cF0

cE1 ð½E�=½F�Þ þ cF1
: (18)

An alternative expression for this ratio can be obtained
from the MTT applied to the graph GSI . Since GSI is
assumed to be reversible, it is helpful—to organize the ex-
pressions that arise from the MTT—to consider undirected
spanning trees in the corresponding undirected graph Gu

SI ,
which is GSI , but with the directions of the edges ignored.
Given any vertex i, any spanning tree T of Gu

SI can be
uniquely ‘‘lifted’’ to a directed spanning tree Ti rooted at i,



a b
FIGURE 3 An example covalent modification cy-

cle and the graph GSI . (a) A covalent modification

cycle where the enzyme E obeys the random order

bi-bi mechanism from Fig. 2 and the enzyme F

acts by a reversible Michaelis-Menten mechanism.

(b) The associated linear framework graph GSI

involving the substrates and the intermediates. Edges

whose labels include concentration terms are shown

in blue. To see this figure in color, go online.
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and all rooted spanning trees arise in this way. This means,
in particular, that there is a bijection between QiðGSIÞ and
QjðGSIÞ for any two distinct vertices i and j. As explained
further in (42), this bijection can be made explicit by taking
any rooted spanning tree T ˛QiðGSIÞ and reversing the di-
rection of the edges on the unique directed path in T
from j to the root i, to give a rooted spanning tree T0 ˛
QjðGSIÞ. Fig. 4 c illustrates this construction between the
spanning trees TS0 and TS1 . Notice that, as a consequence
of this transformation, the edges of T that are not on the
unique directed path from j to i are also found in T0.

Applying the MTT to the spanning trees arising from GSI ,
we get

½S1�
½S0� ¼

P
TwðTS1ÞP
TwðTS0Þ

; (19)
where the sum is over the spanning trees of Gu
SI and TS1 and

TS are the directed spanning trees rooted at S1 and S0,
0

respectively.
Every spanning tree of Gu

SI contains a unique path be-
tween S0 and S1—if there were multiple paths, it would
fail to be a tree, and if there were no path, the tree would
fail to include every vertex (it would fail to be ‘‘spanning’’).
LetU be the set of spanning trees where the path between S0
and S1 involves intermediates containing E. Let V be the set
of spanning trees where the path between S0 and S1 involves
intermediates containing F. Every spanning tree of Gu

SI lies
in either U or V, never both (Fig. 4 b).

Furthermore, if T ˛U, the weights wðTS0Þ and wðTS1Þ
must be linear in ½E� because the directed trees must leave
S1 (resp. S0) by exactly one edge, and it must be an edge car-
rying ½E� on its label since T lies inU. Similarly, if T lies in V,
the weights wðTS0Þ and wðTS1Þ must be linear in ½F�.

Consequently, we can write

½S1�
½S0� ¼

P
T ˛UwðTS1Þ þ

P
T ˛VwðTS1ÞP

T ˛UwðTS0Þ þ
P

T ˛VwðTS0Þ
¼ A½E� þ B½F�

C½E� þ D½F� ¼ Að½E�=½F�Þ þ B

Cð½E�=½F�Þ þ D
;

(20)
where A, B, C, and D are positive constants that do not
depend on ½E� or ½F�. We also have
AD

BC
¼ A½E�D½F�

C½E�B½F� ¼
P

T ˛UwðTS1Þ
P

T ˛VwðTS0ÞP
T ˛UwðTS0Þ

P
T ˛VwðTS1Þ

: (21)

When comparing Eq. 20 with Eq. 18, it is worth noting
that we cannot simply conclude that the coefficients of the
expressions on the righthand sides are equal. To proceed,
we need the following claim.

Claim 1

Suppose a1; b1; c1; d1; a2; b2; c2; and d2 are nonzero real
numbers such that

a1x þ b1
c1x þ d1

¼ a2x þ b2
c2x þ d2

(22)

for all x. Then,
a1d1
b1c1

¼ a2d2
b2c2

: (23)

Proof

Equation 22 implies that

ða1xþ b1Þðc2xþ d2Þ ¼ ða2xþ b2Þðc1xþ d1Þ: (24)

Expanding yields ða1c2 � a2c1Þx2 þ ða1d2 �
a2d1 þb1c2 � b2c1Þx þ ðb1d2 � b2d1Þ ¼ 0. Since this
holds for all x, we find that b1d2 ¼ b2d1 and a1c2 ¼
a2c1. This means that

1 ¼ b1d2
b2d1

¼ a1c2
a2c1

; (25)

from which the desired result follows by rearrangement.
Equating Eqs. 18 and 20 and applying the claim yields
cE0c
F
1

cE1c
F
0

¼
P

T ˛UwðTS1Þ
P

T ˛VwðTS0ÞP
T ˛UwðTS0Þ

P
T ˛VwðTS1Þ

: (26)

Now, let T be a tree of Gu
SI , and suppose that P is the unique

directed path from S0 to S1 in TS . Let P
� denote the reverse
1

directed path from S1 to S0. As noted previously, the edges
that do not lie on P in TS1 and the edges that do not lie on P

�

in TS0 are identical (Fig. 4 c). It therefore follows that
wðTS1Þ=wðTS0Þ ¼ wðPÞ=wðP�Þ. By assuming that the ther-
modynamic force is the same about any cycle in our reaction
network, this quantity depends only on whether T lies in
U or V.
Biophysical Journal 122, 1–13, May 16, 2023 7



a b

c

FIGURE 4 Lifting the undirected spanning trees

of Gu
SI . (a) The graph Gu

SI associated with the cova-

lent modification cycle of Fig. 3, together with (b)

two example spanning trees of Gu
SI , T and R. In

each tree, the unique path between S0 and S1 is indi-
cated in green. In T, the intermediates on the unique

path are in E so that T ˛U; in R, the intermediates

are in in F so that R˛V. (c) The directed spanning

trees TS0 and TS1 rooted at S0 and S1, respectively.
Note how the unique directed path between S0 and

S1 is reversed to convert between TS0 and TS1 , as

explained in the text. To see this figure in color, go

online.
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Consequently,

cE0c
F
1

cE1c
F
0

¼ wðPÞwðQÞ
wðP�ÞwðQ�Þ ; (27)

where P is any directed path from S0 to S1 through the inter-
mediates containing E, Q is any directed path from S1 to S0

through the intermediates containing F, and P� and Q� are
the respective reverses of those paths.

Accordingly,

log

�
cE0c

F
1

cE1c
F
0

�
¼ log

�
wðPÞwðQÞ
wðP�ÞwðQ�Þ

�
¼ log

�
wðCÞ
wðC�Þ

�
;

(28)

where C is the directed cycle in GSI formed by the concate-	
wðCÞ




nation of P and Q. But the term log wðC�Þ is exactly a log

ratio of rates about a cycle, as we considered in our physical
discussion above. It is therefore equal to the thermodynamic
force, or chemical potential difference Dm=kBT, holding the
system out of equilibrium. This proves Eq. 17.
The dynamic range

The groundwork we have laid now allows us to establish
bounds—in terms of Dm=kBT—on the characteristics of a
switch based on any covalent modification cycle, taking
the ‘‘output’’ variable of the switch to be the logarithm of
steady-state ratio ½S1�=½S0� and ‘‘input’’ variables to be the
conserved enzyme totals.

The simplest characteristic of a switch is the difference
between the largest and smallest values its output
variable can assume—the dynamic range. From Eq. 18,
we have

log

�
cF0
cF1

�
< log

�½S1�
½S0�

�
< log

�
cE0
cE1

�
; (29)

and these limits can be approached, the larger when Ftot/ 0

and the smaller when Etot/0. The dynamic range of the

switch is then the difference of these extremes, which, by
Eq. 17, is simply equal to Dm=kBT. In the special case where
each enzyme forms only one intermediate enzyme-substrate
8 Biophysical Journal 122, 1–13, May 16, 2023
complex, this thermodynamic bound on the dynamic range
was found by Qian (19).
The high substrate regime

We now turn to the sensitivity of a switch—how sharply
can the output respond to a small change in the input?
Our main result is that in the limit where Stot is very
large compared with the enzyme totals Etot and Ftot

and the generalized Michaelis-Menten constants, the
sensitivity is bounded by a simple function of the
switch parameters. To be precise, the ratio ½S1�=½S0� has
a well-defined limit as Stot/N. It is this limiting value,
which depends on the rate constants and conserved
enzyme totals, whose sensitivity we bound in the
following result,���� v

vlog Etot

log

�
lim

Stot/N

½S1�
½S0�

�����%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cE0c

F
1=c

E
1c

F
0

p
� 1

2
; (30)

whose proof will follow below. By Eq. 17, the righthand
side can expressed in terms of the thermodynamic force

alone:���� v

vlog Etot

log

�
lim

Stot/N

½S1�
½S0�

�����% exp ðDm=2kBTÞ � 1

2
: (31)

Equation 31 is our main result. We note that in the limit of
thermodynamic irreversibility Dm=kBT/N, the righthand
side of Eq. 31 diverges, consistent with the finding of ‘‘un-
limited’’ sensitivity by Goldbeter and Koshland, as dis-
cussed in the introduction.

To prove the bound in Eq. 30, our starting point is Eq. 13.
In prior work (16), it was shown that Eq. 13 implies the ex-
istence of the limit

s ¼ lim
Stot/N

½S1�
� ½S0�

and that the limiting value s is the unique positive solution
of the quadratic equation (Eq. 18; (16)):
Etot

Ftot

�
1

KF
0

þ s

KF
1

��
cE0 � cE1s

� ¼
�

1

KE
0

þ s

KE
1

��
cF1s � cF0

�
:

(32)
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This equation can be rearranged to express Etot

Ftot
as a

rational function of s,

Etot

Ftot

¼

�
1

KE
0

þ s

KE
1

��
cF1s � cF0

�
�

1

KF
0

þ s

KF
1

�
ðcE0 � cE1sÞ

; (33)
with numerator and denominator both positive for any
value of s within the bounds on its value set by our dy-

namic range result in Eq. 29. This means that Etot= Ftot

can be viewed as a continuously differentiable function
of s.

Rewriting Eq. 32 in terms of variables x ¼ log
	
Etot

Ftot



and

y ¼ log s, we have

x ¼ log
�
KE

1 þKE
0 e

y
�þ log

�
cF1e

y � cF0
� � log

�
KF

1

þKF
0 e

y
� � log

�
cE0 � cE1e

y
�þ log

�
KF

0K
F
1

KE
0K

E
1

�
:

(34)
Our goal is to bound the derivative dy=dx. We will do this
by studying the derivative of the inverse, which is

dx

dy
¼

0
BB@ ey

ey � cF0
cF1

þ ey

cE0
cE1

� ey

1
CCAþ

0
BBB@ ey

KE
1

KE
0

þ ey
� ey

KF
1

KF
0

þ ey

1
CCCA:

(35)
The second term in brackets is the difference of two pos-
itive quantities no larger than one, so it can be no smaller

than � 1. It approaches � 1 when
KE
1

KE
0

/N and
KF
1

KF
0

/ 0.

The first term in brackets is minimized, for fixed values of

the tgCEs, when y ¼ log

ffiffiffiffiffiffiffi
cF
0
cE
0

cE
1
cF
1

r
, when it takes the value� ffiffiffiffiffiffiffi

cF
1
cE
0

cF
0
cE
1

r
þ1

�� ffiffiffiffiffiffiffi
cF
1
cE
0

cF
0
cE
1

r
� 1

�
.

Therefore,
a b
dx

dy
R

ffiffiffiffiffiffiffiffiffi
cF1c

E
0

cF0c
E
1

s
þ 1

ffiffiffiffiffiffiffiffiffi
cF1c

E
0

cF0c
E
1

s
� 1

� 1> 0: (36)

Since the function relating x and y is continuously differ-
entiable and this derivative is never zero, this implies that

dy

dx
%

0
BBBBB@

ffiffiffiffiffiffiffiffiffi
cF1c

E
0

cF0c
E
1

s
þ 1

ffiffiffiffiffiffiffiffiffi
cF1c

E
0

cF0c
E
1

s
� 1

� 1

1
CCCCCA

� 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cE0c

F
1=c

E
1c

F
0

p � 1

2
;

(37)

which establishes Eq. 30. Finally, applying Eq. 17 yields Eq.
31. See Fig. 5 a for a numerical illustration of this result.
In prior work, Qian (19)—studying a reversible covalent-
modification switch with a single intermediate for each
enzyme—gave an asymptotic formula for the derivative
vð½S1� =StotÞ=vlog Etot in the high substrate regime and at a
point where ½S1�=Stot ¼ 1=2. Starting from our Eq. 35,
and taking y ¼ 0, we can develop a similar expression:

v

vlog Etot

log

�
lim

Stot/N

½S1�
Stot

�
¼ 1

4

2
6664
0
BB@ 1

1 � cF0
cF1

þ 1

cE0
cE1

� 1

1
CCA

þ

0
BBB@ 1

KE
1

KE
0

þ 1

� 1

KF
1

KF
0

þ 1

1
CCCA
3
7775

� 1

; (38)

when ½S1�=Stot ¼ 1=2. This result may be compared with
Eq. 17 of Qian (19), but it is not equivalent to it. Our equa-

tion reduces, under the multiple limits simultaneously taken
by Qian, to the thermodynamic parts of his expression.
However, Qian’s equation additionally includes terms
FIGURE 5 Thermodynamic force bounds sensi-

tivity. Numerical illustration of our bounds by

random sampling of rate constants for a covalent

modification cycle in which both enzymes have sin-

gle intermediates (see materials and methods for de-

tails). (a) Points show values of the thermodynamic

force and sensitivity achieved when Stot ¼ 20; 000

(red). In (b), the same is plotted together with

Stot ¼ 2 (green), and Stot ¼ 0:01 (blue). In all

cases, Etot ¼ Ftot ¼ 1. These numerical results

are compared with the bound Eqs. 31 (solid red

curve) and 39 (solid blue curve). To see this figure

in color, go online.
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proportional to 1=Stot, which cannot appear in our expres-
sion because we have already taken the limit Stot/ N.
FIGURE 6 The same parameter choice can saturate the low and high

Stot bounds. The sensitivity bound given by Eq. 31 in the high Stot
regime is shown by the solid red line, and the sensitivity bound given

by Eq. 39 in the low Stot regime is shown by the solid blue line.

The colored dots represent sensitivities for a covalent modification

cycle with KE
0 ¼ KF

1 ¼ 10� 4, KE
1 ¼ KF

0 ¼ 103, cE0 ¼ cF1 ¼
expðDm =2kBTÞ, cE1 ¼ cF0 ¼ 1, and Etot ¼ Ftot ¼ 1 (see materials and

methods for details). Different colors for the dots signify different values

of Stot: 100 (red), 4 (light green), 2 (dark green), and 0.01 (blue). Note that

Stot ¼ 100 and Stot ¼ 0:01 already achieve, within the limits of resolu-

tion, the higher and lower bounds, respectively. To see this figure in color,

go online.
The low substrate regime

The sensitivity bound Eq. 31 for the high substrate regime can
be viewed as a companion to a corresponding result in the low
substrate regime (43) given by the following formula:���� v

vlog Etot

log

�
lim

Stot/0

½S1�
½S0�

�����% tanhðDm = 4kBTÞ : (39)

Note that the righthand side is less than 1: there can be no
ultrasensitivity in the low substrate regime. This result is a
manifestation of a recently identified (43) universal thermo-
dynamic bound on the response of nonequilibrium systems
to perturbations. It also follows directly from the approach
described here, as we now show.

In the limit where Stot is very small, we have ½E�/ Etot,
½F�/Ftot, which together with Eq. 18 implies that

lim
Stot/0

½S1�
½S0� ¼ cE0 ðEtot=FtotÞ þ cF0

cE1 ðEtot=FtotÞ þ cF1
: (40)

Let 4 denote this limiting quantity and set z ¼ Etot= Ftot.
Taking the derivative, we find that

v

vlog Etot

logð4Þ ¼ cE0c
F
1z � cF0c

E
1 z

ðcF0 þ cE0 zÞðcF1 þ cE1 zÞ

¼
	 ffiffiffiffiffiffiffiffiffiffiffi

cE0c
F
1 z

p � ffiffiffiffiffiffiffiffiffiffiffi
cF0c

E
1 z

p 
	 ffiffiffiffiffiffiffiffiffiffiffi
cE0c

F
1 z

p þ ffiffiffiffiffiffiffiffiffiffiffi
cF0c

E
1 z

p 

ðcF0 þ cE0 zÞðcF1 þ cE1 zÞ

:

Using the inequality of the arithmetic and geometric
means,

�
cF0 þ cE0 z

��
cF1 þ cE1 z

�
R

� ffiffiffiffiffiffiffiffiffiffiffi
cE0c

F
1 z

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
cF0c

E
1 z

q �2

:

Recalling that tanhðxÞ ¼ ðe2x � 1Þ=ðe2x þ 1Þ, we see that���� v

vlog Etot

logð4Þ
���� %

ffiffiffiffiffiffiffiffiffiffiffi
cE0c

F
1 z

p
�

ffiffiffiffiffiffiffiffiffiffiffi
cF0c

E
1 z

p
ffiffiffiffiffiffiffiffiffiffiffi
cE0c

F
1 z

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
cF0c

E
1 z

p
¼ tanh

�
1

4
log

�
cE0c

F
1

cF0c
E
1

��
:

(41)

Finally, applying relation Eq. 17 yields Eq. 39. See
Fig. 5 b for a comparison of this bound with that for
the high substrate regime. The bound on the sensitivity
in the high substrate regime is larger than the bound
in the low substrate regime for all nonzero values of
Dm=kBT. For small Dm=kBT, the two bounds are equal to
first order.

Saturating our bounds

Remarkably, at any fixed force, there are covalent modifica-
tion cycles that, with the same kinetic parameters, can satu-
rate either bound Eq. 39 or Eq. 31, as the substrate
10 Biophysical Journal 122, 1–13, May 16, 2023
concentration is varied. Maximal sensitivity, in both Stot re-
gimes, can be achieved when the enzymes act as ‘‘mirrors’’
of each other (i.e., the network is invariant under the ex-
change E4F and S04S1).

For example, consider a covalent modification cycle with
cE0 ¼ cF1 ¼ exp ðDm =2kBTÞ, cE1 ¼ cF0 ¼ 1, and the ‘‘for-
ward’’ generalized Michaelis-Menten constants KE

0 ¼
KF
1hKM, which are very small compared with the

‘‘reverse’’ constants KE
1 ¼ KF

0hKR. For such a covalent
modification cycle, Eq. 35 gives the maximal sensitivity in
the high Stot regime explicitly as

exp ðDm=2kBTÞ � 1

2
� 1þ KM=KR

1þ exp ðDm=2kBTÞKM=KR

;

(42)

saturating our bound Eq. 31 when KR [KM. For the same
parameters, in the low S regime, we have
tot

½S1�
½S0�z

cE0 ðEtot=FtotÞ þ cF0
cE1 ðEtot=FtotÞ þ cF1

¼ exp ðDm=2kBTÞðEtot=FtotÞþ 1

ðEtot=FtotÞ þ exp ðDm=2kBTÞ ;
(43)

leading to a maximal sensitivity of tanhðDm =4kBTÞ, satu-
rating the low Stot bound Eq. 39. These results are illustrated

in Fig. 6.
DISCUSSION

The bounds we have presented provide a quantitative pic-
ture of how general covalent modification cycles are
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constrained by thermodynamics. We have framed our re-
sults in terms of the chemical potential Dm, which is the
nonequilibrium driving force of the system and is a natural
way to quantify the energetic requirements of the switch.
To see this, it is important to note that there can be no
direct trade-off between the rate of (free) energy expendi-
ture—the power—and steady-state properties of the system
like its sensitivity or dynamic range. This is because the
power can be scaled arbitrarily by scaling all reaction rates
by the same constant or, equivalently, by rescaling time,
whereas this operation leaves the steady state completely
unchanged. To compare it with steady-state quantities, po-
wer must be divided by some other rate relevant to the sys-
tem. The quantity Dm is equal to the energy consumed per
cycle completion, i.e., it is the power divided by the rate of
cycle completion.

Our results highlight the fact that under common cir-
cumstances, thermodynamics does not tightly constrain
the sensitivity of biochemical switches. For example, in
a phosphorylation-dephosphorylation cycle driven by
ATP hydrolysis, typical physiological values of Dmz
20 � 30 kBT are deep in the saturated regime of the low
Stot bound and, in the high Stot case, lead to a maximum
possible sensitivity of � 104 to 106, far in excess of
what is needed to account for typical Hill coefficients
measured in ultrasensitive systems (20). The sensitivity
of such strongly driven switches may be constrained by
other factors, such as kinetics or the abundance of
substrate.

Our bounds also show that, from the perspective of
making a good switch based on covalent modification,
enzymological complexity provides no benefit. No matter
the number of enzymatic intermediates or how elaborate
their reactions, the same thermodynamic bounds on sensi-
tivity hold. This is in contrast to numerous examples in
biophysics where having more states or ‘‘steps’’ provides
some advantage. For example, in kinetic proofreading,
having more proofreading steps allows for a degree of
discrimination that can never be achieved with fewer,
even as Dm/N (43–45). As another example, the
maximum possible coherence of biochemical oscillations
is conjectured to depend strongly on the number of states
available, together with the strength of nonequilibrium
driving (46).

A number of basic questions remain. First, what is the
bound on sensitivity in terms of Dm and Stot? We have
only studied the limiting cases in which substrate is very
scarce or abundant. It is natural to conjecture that the
maximum possible sensitivity is increasing in Stot and that,
therefore, our high substrate bound Eq. 31 in fact holds
for all Stot.

Second, in this article, we have focused on steady-
state behavior. It would be very interesting to also under-
stand the constraints on the transient behavior. For
example, in vision, the exceptional amplification that
enables rod cells to respond one or a few photons
involves a transient response of a modification cycle
involving rhodopsin and transducin, driven by GTP hydro-
lysis (47,48).

Finally, we note that even simpler properties of general
covalent modification cycles remain incompletely under-
stood. For example, to our knowledge, it remains an
open problem to prove the monotonicity of the steady-state
ratio ½S1�=½S0� as a function of the enzyme totals. Such
matters may at first seem only of mathematical interest,
but we think understanding them carefully could bear
fruit—especially in the study of systems, such as signaling
cascades, in which covalent modification cycles appear as
parts (49).
MATERIALS AND METHODS

To generate Fig. 5, the sensitivity was evaluated numeri-
cally for the simplest reversible covalent modification
cycle

Eþ S0 %
a

b
ES%

c

d
Eþ S1

Fþ S1 %
s

r
FS%

q

k
Fþ S0

for random choices of the rate constants a, b, c, d, s, r,
q, and k. Explicitly, for the Stot ¼ 20; 000 (red) and

Stot ¼ 2 (green) points, all rate constants were drawn
uniformly from the interval ð0; 10Þ except for d and k,
which were drawn uniformly from ð0; 0:1Þ. For the
Stot ¼ 0:01 (blue) points, all rate constants were drawn
uniformly from the interval ð0; 10Þ except for d and k,
which were drawn uniformly from ð0; 0:5Þ. The polyno-
mial equations defining the steady state were solved
numerically (using NSolve in Wolfram Mathematica),
and the derivative defining the sensitivity at
Etot ¼ Ftot ¼ 1 was estimated by taking a finite
difference. For this covalent modification cycle,

Dm=kBT ¼ log
�
acsq
bdrk

�
.

To generate Fig. 6, Eqs. 12 and 13 were solved numeri-

cally, with KE
0 ¼ KF

1 ¼ 10� 4, KE
1 ¼ KF

0 ¼ 103, cE0 ¼
cF1 ¼ exp ðDm =2kBTÞ, cE1 ¼ cF0 ¼ 1, and varying values
of Stot. The sensitivity with respect to Etot at
Etot ¼ Ftot ¼ 1 was estimated by taking a finite difference,
i.e., by finding S1=S0 for Etot ¼ 1 and Etot ¼ 1þ e, taking
the difference of the resulting values, and dividing by e. We
used e ¼ 0:000001.
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