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The linear framework uses finite, directed graphs with labelled edges to model
biomolecular systems. Graph vertices represent chemical species or molecular
states, edges represent reactions or transitions and edge labels represent rates
that also describe how the system is interacting with its environment. The present
paper is a sequel to a recent review of the framework that focussed on how graph-
theoretic methods give insight into steady states as rational algebraic functions of
the edge labels. Here, we focus on the transient regime for systems that
correspond to continuous-time Markov processes. In this case, the graph
specifies the infinitesimal generator of the process. We show how the
moments of the first-passage time distribution, and related quantities, such as
splitting probabilities and conditional first-passage times, can also be expressed as
rational algebraic functions of the labels. This capability is timely, as new
experimental methods are finally giving access to the transient dynamic regime
and revealing the computations and information processing that occur before a
steady state is reached. We illustrate the concepts, methods and formulas through
examples and show how the results may be used to illuminate previous findings in
the literature.
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1 Introduction

The linear framework is a graph-theoretic approach to analysing biomolecular systems
(Gunawardena, 2012; Mirzaev and Gunawardena, 2013; Gunawardena, 2014). A recent
review (Nam et al., 2022) described how the framework has been used to study systems at
steady state, in contexts such as post-translational modification and gene regulation. The
present paper is a sequel to this review, which describes how the graph-theoretic approach
can be extended to the transient regime, prior to the steady state being reached, for systems
that are Markov processes. These new results were introduced in the first author’s Ph.D.
thesis (Nam, 2021) and full details with complete proofs are being published separately (Nam
and Gunawardena, 2023). The purpose of the present paper is to provide an elementary
introduction to this circle of ideas for a wider readership in cell and developmental biology.
We hope this will be of interest to anyone who wants to explore the transient regime for
biological systems that can be modelled by Markov processes.

Linear framework graphs (hereafter, “graphs”) are finite, simple, directed graphs with
labelled edges. (A simple graph is one in which there is at most one edge between any two
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distinct vertices and there are no self-loops.) Graph vertices, usually
denoted 1, 2, 3, . . ., represent chemical species or molecular states;
edges, denoted i → j, represent reactions or transitions; and edge
labels, denoted ℓ(i → j), represent rates which are positive and have
dimensions of (time)−1. Importantly, the labels may include
expressions that describe how the underlying system is
interacting with its environment. For example, the graph in
Figure 1A shows how ligand binding gives rise to concentration
terms in the edge labels.

A graph yields a linear dynamics, from which the linear
framework gets its name. The dynamics is most simply described
by imagining that the edges are chemical reactions with the edge
labels as the rate constants for mass-action kinetics. Since each
reaction has only a single substrate, the resulting dynamics is
necessarily linear and can be expressed in matrix form as

du t( )
dt

� L G( ) · u t( ). (1)

Here, u(t) � (u1(t), . . . , uN(t))T is the column vector of
concentrations at each of the N vertices, and L(G) is the
Laplacian matrix of the graph (Figure 1B). Graph Laplacians are
defined with varying conventions and scalings and they may be
interpreted as discrete versions of the classical Laplacian differential
operator (Chung, 1997). From this viewpoint, Eq. 1 is a discretised
diffusion equation. Since matter is neither created nor destroyed
during the dynamics, there is a conservation law,

u1 t( ) +/ + uN t( ) � utot. (2)
Eq. 2 manifests itself in the column sums of the Laplacian being zero,
1 · L(G) � 0 (Figure 1B), where 1 denotes the all-ones row vector of
the appropriate dimension.

The framework is typically used in two contexts: for bulk
biochemistry of reacting chemical species, where u(t) in Eq. 1
describes the deterministic time evolution of species
concentrations; and for individual molecular systems that exhibit
stochastic transitions, where u(t) describes the deterministic time

evolution of the probabilities of the molecular states. In the latter
case, since probabilities sum to 1, utot = 1. It is interesting that the
same mathematics describes both contexts. Here, we will be working
in the context of individual molecules and stochastic transitions.
From now on, u(t) will be the vector of probabilities and we will
assume that utot = 1.

The graph formulation allows nonlinear biochemistry, which
often arises from ligand binding, to be disentangled into a linear part
carried by the linear dynamics in Eq. 1 and a nonlinear part that
comes through the edge labels (Nam et al., 2022). The terms
appearing in the labels, such as ligand concentrations
(Figure 1A), have to be dealt with separately. They may be
specified by separate conservation laws or by other graphs (Nam
et al., 2022). For the present paper, we will assume that any ligands
that are interacting with a graph are present in “reservoirs” (Nam
et al., 2022, §4), similar to thermodynamic reservoirs, so that their
free concentrations do not change upon binding. Accordingly, edge
labels are treated as constants over the timescale of the dynamics in
Eq. 1. In this case, for the stochastic context described above, the
graph specifies the infinitesimal generator for a finite-state,
continuous-time, time-homogeneous Markov process, X(t),
(hereafter, a “Markov process”), so that the edge labels are given by,

ℓ i → j( ) � lim
h→0

Pr X t + h( ) � j | X t( ) � i( )
h

,

whenever the right-hand side is nonzero and therefore positive. (A
zero infinitesimal rate does not yield an edge.) Conversely, any such
Markov process with an infinitesimal generator is specified by a
graph (Mirzaev and Gunawardena, 2013, Theorem 4). The
Laplacian dynamics in Eq. 1, with utot = 1, becomes the master
equation for the forward evolution of the vertex probabilities, u(t).
The linearity of the linear framework is perhaps less surprising now,
as master equations are, indeed, linear (van Kampen, 1992). We see
that, within reservoir assumptions, the linear framework provides a
graph-theoretic way to define and study the Markov processes that
have been widely used to model biological systems.

FIGURE 1
Linear framework graph and Laplacian matrix. (A) An example graph, G, representing the binding of two ligands, each to one site, on a biomolecule,
with vertices indexed 1, . . ., 4 as shown. The labels on the edges 1→ 2 and 3→ 4 include the concentration, x, of the blue ligand that binds to the first site
and the labels on the edges 1→ 3 and 2→ 4 include the concentration, y, of the purple ligand that binds to the second site. The parameters k1, k3, k5 and k7
are on-rates for binding, with dimensions of (concentration × time)−1; the other parameters are simple rates with dimensions of (time)−1. Graphics
were generated using BioRender.com. (B) The Laplacian matrix, L(G), for the graph in panel A.

Frontiers in Cell and Developmental Biology frontiersin.org02

Nam and Gunawardena 10.3389/fcell.2023.1233808

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1233808


Surprisingly, the graph rarely makes an appearance in the
Markov process literature. This may be because the graph theory
has so far primarily been used to study steady states of the Laplacian
dynamics (Nam et al., 2022), which may not have been of much
mathematical interest outside of applications in biology. Since Eq. 1
is linear, it can readily be solved in terms of the eigenvalues and
eigenvectors of L(G). Recall that if L(G) · v � λv, for some vector v
and some scalar λ, then v is an eigenvector for the eigenvalue λ

(Strang, 2022). By definition, the steady state of Eq. 1, which we will
denote by u∞(G), satisfies du∞(G)/dt = 0, so it follows from Eq. 1
that L(G) · u∞(G) � 0. In other words, u∞(G) is an eigenvector for
the zero eigenvalue.

When G is strongly connected (see below), the steady state,
u∞(G) is unique. This particular eigenvector can be calculated
from L(G) using the determinants of principal sub-matrices, or
the first minors of L(G), which thereby have terms of alternating
sign (Strang, 2022). It is a remarkable property of Laplacian matrices
that extensive cancellations take place so that their minors can be
written asmanifestly positive polynomials in the edge labels (Eq. 5). A
polynomial is a sum ofmonomials, where a monomial is an algebraic
expression consisting solely of a product of variables and a numerical
coefficient, like 5a3bc2 (Barbeau, 1989). A polynomial is manifestly
positive if the numerical coefficient of each monomial is positive. (A
polynomial like a2 − 2ab + b2 = (a − b)2 is positive for any distinct
positive values of a and b, but it is not manifestly positive.) A rational
function or rational expression is the ratio of two polynomials and is
itself manifestly positive if both its numerator and denominator
polynomials are manifestly positive.

The algebra that gives rise to manifestly positive polynomials is
controlled by appropriate subgraphs of G, described in the classical
Matrix-Tree theorem (MTT), which goes back to 19th century work
on electrical circuits (Kirchhoff, 1847; Mirzaev and Gunawardena,
2013); the manifest positivity is exactly what is required for
parametric dependence in biology. Steady-state probabilities
thereby emerge as manifestly positive rational functions of the
edge labels (Eq. 4). This representation has proved very useful in
giving mathematical access to steady states (Nam et al., 2022).

An important feature of this rational expression for steady-state
probabilities is that it holds for systems that do not necessarily reach
a steady state of thermodynamic equilibrium. Briefly, graphs that
can reach thermodynamic equilibrium must be reversible, so that,
given any edge i→ j, there is an edge j→ i that represents the reverse
process, and must satisfy the cycle condition: the product of the label
ratios along any cycle of reversible edges is always 1 (Nam et al.,
2022, §4). The cycle condition is equivalent to detailed balance or
microscopic reversibility. In this case, a considerable simplification
can be made in describing steady-state probabilities and the
resulting expressions turn out to be equivalent to those of
equilibrium statistical mechanics (Nam et al., 2022, §4). One
great advantage of the linear framework is that it provides a
restricted context in which non-equilibrium statistical mechanics
can be exactly solved in rational algebraic terms. The functional
significance of energy expenditure is a very interesting problem in
cellular information processing (Estrada et al., 2016) but lies outside
the scope of the present paper. We will mention some of the
questions that arise in the Discussion.

A distinguishing feature of the linear framework is that the
graph is treated, not just as a description or as a vehicle for doing

Matrix-Tree calculations, but as a mathematical entity in its own
right, in terms of which general theorems can be formulated. The
graph provides a rigorous language in which salient biological
features can be precisely expressed while others can be left
largely unspecified, thereby allowing some general principles to
emerge from behind the overwhelming molecular complexity that
is ever present. Among the areas for which this approach has yielded
insights are input-output responses (Wong et al., 2018; Yordanov
and Stelling, 2018), post-translational modifications (Dasgupta et al.,
2014; Nam et al., 2020), allostery (Biddle et al., 2021) and gene
regulation (Estrada et al., 2016; Biddle et al., 2019).

Since the initial development of the linear framework, we had
long thought that only steady states could be expressed as rational
functions of the edge labels. However, as we will show here,
important properties of the transient regime, such as first-passage
times, can also be calculated as rational functions of the edge labels.
The capability to analyse transient behaviour using graph-theoretic
methods is particularly welcome because real-time and single-
molecule experimental methods are finally giving access to the
transient regime within living cells (Kleine Borgmann et al., 2013;
Liao et al., 2015; Jones et al., 2017; Loffreda et al., 2017; Chen et al.,
2018; Dufourt et al., 2018; Mir et al., 2018; Volkov et al., 2018;
Nandan et al., 2022). Much of our understanding of biochemical
behaviour has relied on steady-state assumptions, which are not
always explicitly stated. The rich complexity of transient behaviours
which are beginning to emerge suggests that the time is ripe to
develop a more fundamental understanding of the kinds of
biochemical computations and information processing that can
be achieved transiently. For this, the mathematical methods
described here may be of some value.

2 Results

2.1 Steady states and spanning trees

As preparation for discussing first-passage times, we briefly
explain how steady-state probabilities are calculated in terms of
the graph; see (Nam et al., 2022, §2) for more details. If we have a
graph G, we noted in the Introduction that the steady state, u∞(G),
satisfies L(G) · u∞(G) � 0, so that, in linear algebra terms, u∞(G)
lies by definition in the kernel of the Laplacian matrix:
u∞(G) ∈ kerL(G). If G is strongly connected—i.e., if, for any pair
of distinct vertices i and j, there is a directed path of edges from i to
j—then this kernel is one-dimensional (Gunawardena, 2012),

dim kerL G( ) � 1. (3)
(The structure of kerL(G) is well understood for non-strongly
connected graphs (Mirzaev and Gunawardena, 2013). We will
not need this for steady states but we will encounter non-strong
connectivity when discussing first-passage times in the next section.)
Eq. 3 means that if z ∈ kerL(G) is any nonzero vector, then any
other vector in the kernel, such as u∞(G), is a scalar multiple of z:
u∞(G) = λz, for some number λ.

The classical Matrix-Tree theorem (MTT) yields a formula for a
canonical basis vector, ρ(G) ∈ kerL(G). We will describe this
formula shortly but note first that, as just mentioned, u∞(G)
must be a scalar multiple of ρ(G), so that u∞i (G) � λρi(G) for
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i = 1, . . ., N. Using the conservation law in Eq. 2 and recalling that
utot = 1 for probabilities, λmay be removed by normalising, so that,

u∞
i G( ) � ρi G( )

ρ1 G( ) +/ + ρN G( ). (4)

We need some terminology to explain how ρ(G) is determined
fromG. A spanning forest, F, ofG is a subgraph that contains all vertices
in G (“spanning”), lacks cycles when edge directions are ignored
(“forest”), and has at most one outgoing edge from each vertex. The
vertices with no outgoing edges are called the roots of F. If F has only one
root, it is called a spanning tree. A forest consists of separate trees,
although the forest is upside down, with each tree ascending to its root.
Given any non-empty subset of vertices,∅ ≠ U ⊆{1, . . ., N}, let ΦU(G)
denote the set of spanning forests of G that are rooted at U. Finally,

given any subgraph H of G, let w(H) denote the product of all the edge
labels inH:w(H) =∏i→j∈Hℓ(i→ j). As a matter of convention, ifH has
no edges, thenw(H) = 1. Then, ρi(G) is obtained by summingw(F) over
all spanning trees F of G that are rooted at i,

ρi G( ) � ∑
F∈Φ i{ } G( )

w F( ). (5)

ρi(G) is a manifestly positive polynomial in the edge labels, with each
w(F) being a monomial with coefficient +1. The steady-state
probabilities, u∞(G), can be recovered from ρi(G) by using Eq. 4.
Figure 2 illustrates this calculation for an example graph with five
vertices and i = 5. Spanning trees are sufficient to calculate steady-
state probabilities in Eq. 5 but spanning forests are also needed for
the transient quantities considered below (Eqs. 6, 7).

FIGURE 2
Spanning trees and steady-state probabilities. (A) An example graph, G, on five vertices, 1, . . . , 5{ }, with 11 edges, labeled k1,. . ., k11. G is strongly
connected. (B) The 20 spanning trees of G rooted at vertex 5 (red), each with its corresponding monomial product of edge labels. The sum of these
20 edge label products gives ρ5(G) in Eq. 5.
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Eq. 5 is a consequence of the classical MTT. TheMTT is one of a
family of theorems that describe the relationship between theminors
of L(G) and spanning forests of G. The details of how Eq. 5 arises
from the MTT, along with a statement and proof of the MTT itself,
are given in Mirzaev and Gunawardena (2013).

Since a strongly connected graph contains at least one directed
path from each vertex to every other vertex, there is always at least
one spanning tree rooted at each vertex. Therefore, the right-hand
side of Eq. 5 is never empty and has at least one term for any choice
of i. However, the number of rooted spanning trees may depend on
the vertex: in Figure 2, there are 20 spanning trees rooted at vertex
5 but the reader can check that there is only one spanning tree rooted
at vertex 3. The size of ρi(G) can vary markedly with i, depending on
the structure of G.

It follows from Eq. 4 that u∞(G) is a manifestly positive rational
function of the labels and is also always nonzero, irrespective of the
values of the labels. It is well known in probability theory that the
steady-state probabilities of a Markov process are always positive
when the corresponding graph is strongly connected, and here we
not only see why this is so but also how to calculate these
probabilities in terms of the transition rates.

Manifest positivity is what we would want for a formula that
yields a steady-state probability. It is a striking fact that many well-
knownmathematical formulas of molecular biology, such as those of
Michaelis–Menten and King–Altman in enzyme kinetics,
Monod–Wyman–Changeux and Koshland–Némethy–Filmer in
protein allostery and Ackers–Johnson–Shea in gene regulation, all
have the structure of manifestly positive rational functions.
However, they are typically derived in entirely different ways. In
fact, all these rational functions can be shown to arise from Eqs. 4, 5
applied to appropriate linear framework graphs (Gunawardena,
2012; Wong et al., 2018; Nam et al., 2022), thereby revealing a
surprising mathematical unity underlying the complexity of
molecular biology.

2.2 First-passage times and spanning forests

We turn now from the steady state to the transient regime and
specifically to first-passage times (FPTs) (Iyer-Biswas and Zilman,
2016). Given a graph G, the FPT from one vertex, i, to a distinct
target vertex, j ≠ i, is the random variable for the time it takes the
underlying Markov process, X(t), to reach j for the first time when
starting from i. Formally,

Θi,j G( ) � inf t> 0 : X t( ) � j | X 0( ) � i{ }.
Of interest are the mean and higher moments of the FPT
distribution. Recurrence times for the process returning to i after
leaving i can be treated similarly, as can FPTs for reaching a subset of
target states from a distinct subset of initial states, but we will leave
these refinements aside so as not to complicate the discussion.

For the kinds of stochastic molecular systems considered here,
FPTs have been used to quantify several properties: the completion
time of an enzymatic turnover (Fisher and Kolomeisky, 1999; Kou
et al., 2005; Shaevitz et al., 2005; Kolomeisky and Fisher, 2007;
Chemla et al., 2008; Garai et al., 2009; Bel et al., 2010; Moffitt et al.,
2010; Cao, 2011; Moffitt and Bustamante, 2014); the speed with
which an enzyme can discriminate between correct and incorrect

substrates (Banerjee et al., 2017; Cui and Mehta, 2018; Mallory et al.,
2019); the statistical structure of transcriptional bursting (Lammers
et al., 2020); and the time by which a regulated molecule crosses an
abundance threshold (Co et al., 2017; Ghusinga et al., 2017; Gupta
et al., 2018). We briefly discuss two examples by way of motivation
before proceeding to the technical details.

The development of single-molecule techniques for visualising
transcription in live cells (Fukaya et al., 2016; Dufourt et al., 2018)
has revealed that transcription is often characterised by transient
“bursts” of mRNA expression interspersed by periods of inactivity.
Efforts to explain how such bursting arises have focussed on
stochastic transitions between transcriptionally active and inactive
states in a Markovian setting (Peccoud and Ycart, 1995; Lammers
et al., 2020). In active states, successive mRNAs are produced in a
burst, which is terminated when the system makes a transition to an
inactive state. The FPT to reach an active state from an inactive one
provides an estimate of the time between bursts, which can be
measured experimentally. As noted by Lammers et al. (2020),
comparing the distributions of such FPTs offers a sensitive
means to discriminate between different gene regulatory models.

FPTs have also been used to quantify the time at which a
regulated molecule reaches a specific abundance threshold (Co
et al., 2017; Ghusinga et al., 2017; Gupta et al., 2018). An
example of this type of system is bacterial lysis by phage λ. Upon
infecting Escherichia coli, phage λ expresses a protein, holin S105,
that accumulates in the inner cell membrane until a threshold
concentration is reached, at which point the holin molecules
abruptly initiate lysis by puncturing the membrane with large
irregular holes (White et al., 2010). Various other cellular
processes, such as bacterial sporulation (Piggot and Hilbert,
2004), cell cycle progression (Liu et al., 2015) and cell migration
during development (Gupta et al., 2018), rely on similar
thresholding mechanisms. The FPT analysis undertaken by
Ghusinga et al. (2017) shows the impact of different regulatory
strategies on the variance in the FPT to reach the threshold and gives
insight into the regulatory mechanism of bacterial lysis.

Despite their broad usefulness in biology, FPTs have often been
calculated by numerical simulations (Lammers et al., 2020) or by
analytical methods that rely on the special structure of the model
(Ghusinga et al., 2017). We describe here a systematic graph-
theoretic scheme, similar to that in Eq. 5, by which the moments
of the FPT distribution can be expressed as rational functions of the
edge labels.

SinceΘi,j(G) measures the time taken by X(t) to reach j from i for
the first time, the distribution of Θi,j(G) does not depend on the
outgoing edges from j or their labels. Therefore, one can remove
from G the edges leaving j without affecting the distribution of
Θi,j(G). For example, the distribution of Θi,5(G) is the same for the
strongly connected graph in Figure 2A and for the graph in
Figure 3A, which is formed by removing the edges leaving
5 from the graph in Figure 2A. In consequence, it is convenient
when working with FPTs to deal with graphs that may not be
strongly connected, for which some additional terminology is
helpful.

A graph G always has a unique decomposition into strongly
connected components (SCCs), which can be thought of as the
maximal strongly connected subgraphs; see Mirzaev and
Gunawardena (2013) for the full details. The directed edges
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which leave these SCCs give rise to a partial order on the set of SCCs.
Those SCCs which are maximal in the partial order are called
terminal. For example, the graph in Figure 2A is strongly
connected and therefore has only a single SCC, but if the edge 5
→ 1 is removed, to yield the graph in Figure 3A, this graph has
3 SCCs in the partial order {1, 2, 3}⪯{4}⪯{5}. Let us consider the
special case where G has a unique terminal SCC that contains just
one vertex, say, q ∈ {1, . . ., N}, like the graph in Figure 3A. This is
what happens upon removal of the edges leaving a vertex, q, in a
strongly connected graph, as in Figure 2A: q forms a unique terminal
SCC, {q}, with only one vertex. If the underlying Markov process
X(t) starts from any other vertex, say i, then the probability that X(t)
eventually reaches q is 1. There may, of course, be trajectories of the
process along which q is never reached but these form a set of
probability zero.

We need just a bit more notation. The quantities we want to
calculate are the kth moments of the probability distribution of the
FPT from i to q,

τ k( )
i,q G( ) � 〈Θi,q G( )k 〉,

where 〈 − 〉 denotes the average over the underlying sample space of
trajectories. Let I denote the subset of non-terminal vertices,
I � {1, . . . , N}\{q}. Given any non-empty subset of vertices, ∅ ≠
U ⊂ {1, . . ., N}, and vertices j ∈ {1, . . ., N} and r ∈ U, let ΦU:j⇝r(G)
denote the set of spanning forests of G that are rooted at U and
contain a directed path of edges from j to the root r, specified by j⇝
r. By convention, there is always a (trivial) directed path from any
vertex to itself, so that r⇝ r. Then, for the mean FPT, we have (Nam
and Gunawardena, 2023),

τ 1( )
i,q G( ) �

∑j∈I∑F∈Φ j,q{ }: i⇝j G( )w F( )
∑F∈Φ q{ } G( )w F( ) . (6)

The numerator in Eq. 6 runs over all doubly-rooted spanning forests of
G in which q is one root and there is a directed path of edges from i to
the other root. Figure 3B demonstrates this calculation for the graph in
Figure 3A. The denominator in Eq. 6 runs over all spanning trees of G
rooted at q and is similar in that respect to the right-hand side of Eq. 5.

The combinatorics become more complicated for the higher
moments of Θi,q(G). Choose k-tuples of non-terminal vertices,

FIGURE 3
Spanning forests and FPTs. (A)An example graph,G, obtained by taking the graph in Figure 2A and removing the outgoing edge from vertex 5.G has a
single terminal SCC containing the single vertex 5. (B) The 24 doubly-rooted spanning forests of G in which 5 is a root (red font) and there is a path from
1 to the other root (also in red font), eachwith its corresponding product of edge labels. The sumof these 24 edge label products is equal to the numerator
of τ(1)1,5(G) in Eq. 6.
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j1, . . . , jk( ) ∈ I ×/× I︸



︷︷



︸
k times

,

and set j0 = i. Then, for the kth moment, we have (Nam and
Gunawardena, 2023),

τ k( )
i,q G( ) �

k!∑ j1 ,...,jk( ) ∏k
u�1 ∑F∈Φ ju,q{ }: ju−1⇝ju G( )w F( )( )( )
∑F∈Φ q{ } G( )w F( )( )k

. (7)

The product in the numerator of Eq. 7 again involves doubly-rooted
spanning forests, in which q is one of the roots and the other root
shifts along the k-tuple from j1 to jk, with ju−1 having a directed path
to ju as u runs from 1 to k. Eq. 7 reduces to Eq. 6 when k = 1.

Note that a spanning forest, or the special case of a spanning
tree, that has q as a root cannot include any outgoing edge from q.
Hence, the spanning forests or trees with q = 5 as a root are the same
for the strongly connected graph in Figure 2A as for the graph in
Figure 3A, in which {q} has become the unique terminal SCC by
removing the edges that leave q. Accordingly, both the numerator
and denominator in Eqs. 6, 7 give the same result for q = 5 in either
graph. This is the graph-theoretic consequence of the fact,
mentioned above, that the probability distribution of Θi,5(G) is
the same for the graphs in Figure 2A and Figure 3A.

Eq. 7 and, by specialisation, Eq. 6 can be derived, after some
manipulations, from the All-Minors Matrix-Tree theorem, a more
recent generalisation of the classical MTT (Nam and Gunawardena,
2023).

As a sanity check on Eq. 7, we note that if G has N vertices, then
any spanning forest with r roots has N − r edges, as can be checked
for the examples in Figure 2B and Figure 3B. It follows from Eq. 7
that τ(k)i,q (G) has dimensions of (time)k, as expected for the kth
moment of an FPT.

Let us see what Eq. 7 tells us for the graph G consisting of just
two vertices, 1 and 2, with ℓ(1 → 2) = a and ℓ(2 → 1) = b. If we
consider τ(k)1,2 (G), then, for the denominator of Eq. 7, we need the
spanning trees rooted at 2, given by Φ{2}(G). There is only one such
tree F, for which w(F) = a. As for the numerator, we need the
spanning forests rooted at ju and 2, given by Φ{ju,2}: ju−1⇝ju(G). Since
the roots have to be distinct, the only possibility is that ju = 1. But
then the only forest, F, with these roots has just these vertices and no
edges. Recalling the convention for what happens when there are no
edges, we find that w(F) = 1. It follows that Eq. 7 collapses to the
simple conclusion that

τ k( ) G( )
1,2 � k!

ak
.

In particular, the mean FPT is 1/a and the variance, which is
τ(2)1,2 (G) − (τ(1)1,2(G))2, is 1/a2. Only the rate a is relevant, as we
would expect, since the rate b is the label on an edge that leaves the
target vertex. Because this example is so simple, the moments of the
FPT distribution can be readily calculated without the paraphernalia
of Eq. 7. The case of a longer pipeline of vertices is more demanding,
as we will see below (Figure 5).

Eq. 7 gives a general and systematic method to calculate FPTs
from the linear framework graph associated with a Markov process.
It can be used to calculate exact formulas in simple graphs and to
avoid estimating FPT moments by cumbersome numerical

simulations of the Markov process. The combinatorics rapidly
become formidable as the graph becomes larger or less
symmetric, as is perhaps already evident in Figure 2B and
Figure 3B. The broader value of Eq. 7 is that it reveals the
mathematical structure of the FPT moments as manifestly
positive rational functions of the edge labels. This can often be
informative in its own right, as we will see in discussing enzyme
kinetics below. We will say more about ways of dealing with the
combinatorial complexity in the Discussion.

2.3 Splitting probabilities and conditional
FPTs

In the previous section, we considered the FPT distribution from
a given vertex i to a single target vertex. It is, however, often the case
that there are several target vertices and one wants to know the
probability of reaching a particular target vertex or the FPT to that
vertex conditioned on the Markov process actually reaching it. (If
target vertices lie in different SCCs that are not related in the partial
order, then a trajectory that reaches one target can never reach any
other target, so that the mean FPT to each target becomes infinite.
Conditioning on reaching the target is therefore essential.) Let us
suppose, therefore, that G is a graph with one or more terminal
SCCs, each of which consists of a single vertex. Let T ⊂ {1, . . . , N}
be the subset consisting of these terminal vertices. Given i ∈ {1, . . .,
N} and q ∈ T , define the splitting probability from i to q, denoted
πi,q(G), to be the probability that the underlying Markov process,
when started from i, eventually reaches q, as opposed to any other
terminal vertex. Then we have (Nam and Gunawardena, 2023),

πi,q G( ) � ∑F∈ΦT : i⇝q G( )w F( )
∑F∈ΦT G( )w F( ) . (8)

The denominator in Eq. 8 runs over all spanning forests of G rooted
at T , and the numerator runs over the subset of those spanning
forests in which there is a directed path of edges from i to the root q.
Accordingly, the right-hand side of Eq. 8 must lie between 0 and 1, as
expected for a probability. If i ∈ T and i ≠ q, then there is no directed
path from i to q and so Eq. 8 gives 0, while if i = q, then every
spanning forest has a (trivial) path of directed edges from i to q and
so Eq. 8 gives 1. If G contains only one terminal vertex, then every
spanning forest of G rooted at T � {q} has a path of directed edges
from i to q, and so Eq. 8 again gives 1. Figure 4 illustrates the
calculation of the splitting probability from i = 1 to q = 5 on a six-
vertex graph with two terminal vertices, 5 and 6.

Let us turn now to the conditional FPT for reaching a particular
target vertex, q ∈ T , from the vertex i ∈ I , where, as before, I is the
subset of non-terminal vertices, I � {1, . . . , N}\T . For the mean
conditional FPT from i ∈ I to q ∈ T , denoted by χ(1)i,q (G), we find
that (Nam and Gunawardena, 2023),

χ 1( )
i,q G( ) �

∑j∈I ∑F∈ΦT ∪ j{ }: i⇝j G( )w F( )( ) ∑F∈ΦT : j⇝q G( )w F( )( )
∑F∈ΦT : i⇝q G( )w F( )( ) ∑F∈ΦT G( )w F( )( ) . (9)

If there is only one terminal vertex, so that T � {q}, then the mean
conditional FPT, χ(1)i,q (G), as given by Eq. 9, is equal to themean FPT,
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τ(1)i,q (G), as given by Eq. 6. Formulas for the higher moments of the
conditional FPT can be obtained in a similar way.

Evidently, the unconditional mean FPT to reach any terminal
vertex in T from i, denoted ψ(1)

i (G), is now given by,

ψ 1( )
i G( ) � ∑

p∈T
πi,p G( ) χ 1( )

i,p G( ).

Combining Eqs. 8, 9, we can show that this mean FPT can also be
expressed in terms of the spanning forests of G, as

ψ 1( )
i G( ) �

∑j∈I ∑F∈ΦT ∪ j{ }: i⇝j G( )w F( )( )
∑F∈ΦT G( )w F( )( ) , (10)

which specialises to Eq. 6 when there is only a single terminal vertex.
Splitting probabilities and conditional FPTs have not been as widely

used as have the unconditional FPTs described in the previous section.
This reflects the relatively simple models that have been formulated so
far in the literature. However, as we have shown here, there is no greater
difficulty in dealing with these more complex quantities, at least within
the graph-theoretic approach that we have outlined here. All the
quantities we have considered are manifestly positive rational
functions of the edge labels. This mathematical accessibility should
allow deeper analysis of transient stochastic properties.

2.4 Single-molecule enzyme kinetics

Single-molecule experimental methods have given
unprecedented access to the stochastic kinetics of individual
enzymes and have stimulated the development of theoretical
models to account for the resulting data. This literature offers a
convenient setting to illustrate the ideas introduced above.

A frequently used model in enzyme kinetics corresponds to a
pipeline graph (Figure 5) (Fisher and Kolomeisky, 1999; Kou et al.,
2005; Kolomeisky and Fisher, 2007; Chemla et al., 2008; Garai et al.,
2009; Moffitt et al., 2010; Moffitt and Bustamante, 2014). Such a
graph consists of vertices 1, . . ., N, representing different
conformations of the enzyme, with nearest-neighbour transitions,
i→ i + 1 or i→ i − 1. Substrate may bind at any forward transition,
i→ i + 1, so that ℓ(i→ i + 1) incurs a concentration term that we will
denote by x, and binding is assumed to be reversible, so that i + 1→ i.
The final transition, N − 1 → N, is usually treated as an irreversible
catalytic step, with the enzyme returning to its initial conformation,
so that vertex N corresponds to vertex 1 in the next enzymatic cycle.
A pipeline may be thought of as partitioned into reversible “blocks”
that are separated by sequences of irreversible transitions. Figures
5A, C show pipeline graphs with 1 and 3 reversible blocks,
respectively.

FIGURE 4
Splitting probabilities. (A) An example graph, G, on six vertices, 1, . . . ,6{ }, with three SCCs. The partial order is given by {1, 2, 3, 4}⪯{5} and {1, 2, 3, 4}⪯
{6}, with {5} and {6} being the two terminal SCCs. (B) The 18 spanning forests of G rooted at vertices 5 and 6 (red font), with those containing a path from
1 to 5 in the green box and those containing a path from 1 to 6 in the purple box. Each spanning forest is shown with its corresponding product of edge
labels. The sum of all 18 edge label products is equal to the denominator of π1,5(G) in Eq. 8; the sum of the six edge label products in the green box is
equal to the numerator of π1,5(G) in Eq. 8.
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The mean FPT for reaching vertex N from vertex 1 is a measure
of the enzyme’s completion time. Bustamante and colleagues have
emphasised how the substrate dependence of τ(1)1,N(G) and τ(2)1,N(G)
contains information about the enzyme mechanism, and they have
built on previous studies (Derrida, 1983) to analyse this theoretically
(Moffitt et al., 2010). This amounts to studying τ(1)1,N(G) and τ(2)1,N(G)
as functions of x, which falls directly into the scope of the results
described above. We will show how the graph-theoretic methods
introduced here provide a straightforward way to recover some of
these previous findings. We do not intend to be exhaustive and there
is much more of interest in the cited references. We hope, rather, to
show the advantages of the graph-theoretic approach over the
variety of approaches used previously, such as recursive solution
of the master equation (Derrida, 1983) or Fourier transformation
and determinants (Chemla et al., 2008).

Consider first a pipeline graph, G, with a single reversible block
consisting of the vertices 1, . . ., N − 1 and recall Eq. 6 for the mean
FPT, where the terminal vertex is q = N. An example is shown in
Figure 5A with the notation that we will use for the edge labels, ℓ(i→
i + 1) = pi and ℓ(i + 1→ i) = qi. It is evident that there is only a single
spanning tree, T ∈ Φ{N}(G), consisting of all the forward edges, so
that w(T) = p1/pN−1. This gives the denominator of τ(1)1,N(G). As for
the doubly-rooted spanning forests of Φ{j,N}(G) in the numerator,
they can be indexed as F(j, k, N), where j < k ≤ N and k is the vertex
with the smallest index that has a directed path to the root N
(Figure 5B). Furthermore, each such forest has a directed path from
1 to the root j, so thatΦ{j,N}:1⇝j(G) =Φ{j,N}(G).We see from the labels
in Figure 5B that

w F j, k,N( )( ) � p1/pj−1qj/qk−2pk/pN−1, (11)
where the “missing” label, between vertices k − 1 and k, corresponds
to the gap between the tree rooted at j and the tree rooted at N in the
forest. If we divide by the denominator, we see that each spanning

forest F(j, k, N) contributes a rational function of the labels that we
may write in the form,

w F j, k,N( )( )
w T( ) � 1

pj
∏k−2
u�j

qu
pu+1

.

The spanning forests in Φ{j,N}(G) therefore contribute the sum,

∑F∈Φ j,N{ }: 1⇝j G( )w F( )
w T( ) � Δ j,N( )

pj
,

where,

Δ j,N( ) � ∑N
k�j+1

∏k−2
u�j

qu
pu+1

⎛⎝ ⎞⎠. (12)

Note that, in Eq. 12, the empty product for k = j + 1 is by convention
taken to be 1. It follows from Eq. 6 that the enzyme completion time
is given by,

τ 1( )
1,N G( ) � ∑N−1

j�1

Δ j,N( )
pj

. (13)

With some notational translation, Eq. 13 can be seen to be the same
as (Moffitt et al., 2010, Eq. S2). The quantity Δ(j, N) in Eq. 12 first
appears in Derrida’s derivation of the velocity and diffusion constant
of a Markov particle on a periodic pipeline (Derrida, 1983, Eq. 24);
Δ(j, N) = Γ(j + 1, N − 1), where Γ is the quantity defined in Eq. S3 of
Moffitt et al. (2010). The calculation above, using the general
formula for the mean FPT in Eq. 6, is hopefully more transparent.

Suppose now that substrate binds at s forward transitions in the
pipeline graph, with concentration x. We will refer to terms other
than x in the edge labels as “kinetic parameters,” which thereby
include both simple rates and on-rates. Since we can exclude the
final catalytic transition from substrate binding, it follows that 1 ≤

FIGURE 5
Pipeline graphs. (A) A pipeline graph on 8 vertices that consists of a single reversible block, with substrate binding with concentration x at the edges 2
→ 3 and 4 → 5, followed by a single irreversible transition, 7 → 8. (B) The spanning forest F(2, 6, 8), in the notation described in the text, for the graph in
panel A. The two roots, 2 and 8, are in red font. (C) A pipeline graph with three reversible blocks, in each of which the substrate binds once. As explained in
the text, the mean FPT, τ(1)1,8(G), has a reciprocal Michaelis–Menten dependence on the substrate concentration, x, as in Eq. 15.
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s ≤ N − 2. Eq. 11 then shows that the enzyme completion time has
the following structure as a rational algebraic function of x,

τ 1( )
1,N G( ) � a0 + a1x +/ + asxs

bxs
. (14)

Here, the coefficients a0, . . ., as and b are all manifestly positive
polynomials in the kinetic parameters. In particular, the forest F(N −
1, N, N) includes all the substrate-binding transitions, which
confirms that as > 0. If the substrate-binding transitions are
specified, these polynomials may be explicitly calculated using
Eq. 11. Eq. 14 already provides some insight. In the limit of low
substrate, the completion time diverges at an order, 1/xs, that
depends on the number of substrate-binding transitions. In
contrast, in the limit of high substrate, the completion time
asymptotes to the positive value as/b. If substrate binds at only
one transition in the pipeline, so that s = 1, then the completion time
exhibits a reciprocal Michaelis–Menten form (Kou et al., 2005; Garai
et al., 2009; Moffitt et al., 2010; Moffitt and Bustamante, 2014)
(Discussion),

τ 1( )
1,N G( ) � a0 + a1x

bx
. (15)

The higher moments of the FPT, as specified by Eq. 7, are more
complicated to calculate but the doubly-rooted spanning forests that
are needed for the numerator, which are contained in
Φ{ju,N}: ju−1⇝ju(G), have already been enumerated by the forests
F(j, k, N) introduced above (Figure 5B). It seems reasonable to
conclude from Eq. 7 that τ(k)1,N(G) has a similar rational algebraic
structure as shown in Eq. 14 but with a degree of ks for both the
numerator and the denominator. In particular, if substrate binds at
only one transition, so that s = 1, the second moment of the FPT is a
quadratic rational function (Moffitt et al., 2010).

In their study of the packaging motor for the φ29 bacteriophage,
Bustamante and colleagues consider a more general pipeline graph,
G, that consists of multiple reversible blocks separated by single
irreversible transitions (Figure 5C) (Moffitt et al., 2010). The
packaging motor is a pentameric ring of identical ATPase units
that compacts the φ29 double-stranded DNA into the assembling
viral capsid. It has been found to do this in a burst of four ATP-
consuming steps per cycle. ATP hydrolysis during the catalytic step
is typically irreversible under physiological conditions and a pipeline
with 4 reversible blocks serves as a model for the motor (Moffitt
et al., 2010, Figure 4A).

If the Markov process takes an irreversible transition in G, it
cannot subsequently visit the preceding reversible blocks. Also, every
irreversible transition must be taken to reachN. Hence, any trajectory
that begins at 1 and reaches N must take each irreversible transition
exactly once. It follows from this that the FPT from 1 to N is just the
sum of the FPTs for each reversible block considered separately and
these FPTs are all independent of each other. Suppose there are m
reversible blocks which start at the vertices e0, e1, . . ., em−1, where 1 =
e0 < e1 < e2 </ < em−1 < N. Let Gi be the subgraph consisting of the
vertices from ei−1 to ei, which includes the ith reversible block and the
immediately following irreversible transition. It follows that,

τ k( )
1,N G( ) � τ k( )

1,e1
G1( ) + τ k( )

e1 ,e2
G2( ) +/ + τ k( )

em−1 ,N Gm( ). (16)

If substrate binds at the same number of transitions in each
reversible block, then Eq. 7 shows that the τ(k)ei−1 ,ei(Gi) all have the

same rational algebraic structure with the same degrees in both the
numerator and the denominator. It follows from Eq. 16 that τ(k)1,N(G)
must also have this same rational algebraic structure. For the case of
the φ29 packaging motor, ATP binds at only one transition in each
reversible block, so the completion time has the reciprocal
Michaelis–Menten form of Eq. 15 and the resulting curve may be
fitted to the experimental data (Moffitt et al., 2010, Figure 3A).
Bustamante and colleagues make use of the reciprocal of the
coefficient of variation,

nmin �
τ 1( )
1,N G( )( )2

τ 2( )
1,N G( ) − τ 1( )

1,N G( )( )2,
which is readily seen from the discussion above to be a quadratic
rational function of x, and they also fit this curve to the experimental
data (Moffitt et al., 2010, Figure 3B). A theorem due to Aldous and
Shepp (1987), which is of independent interest, tells us that, for an
arbitrary graph with N vertices, nmin < N.

An interesting question arises as to whether nmin itself is also
manifestly positive, as might be expected of a coefficient of variation,
given that this is true for both τ(1)1,N(G) and τ(2)1,N(G). A further point
made by Moffitt et al. (2010) is that the quadratic structure of nmin

may not be limited to pipeline graphs but may be true also for some
graphs with branches and parallel pathways. If so, the graph-
theoretic methods described here offer a way to generalise their
findings.

3 Discussion

We have reviewed here how the graph-theoretic linear
framework, as applied to continuous-time Markov processes, can
be used to show that the moments of the FPT distribution (Eqs. 6, 7),
splitting probabilities (Eq. 8) and conditional mean FPTs (Eq. 9) can
be exactly expressed as manifestly positive rational algebraic
functions of the edge labels or transition rates. This reveals that
not only steady-state probabilities but also transient properties of
Markov processes have this same algebraic structure, thereby
substantially expanding the mathematical scope of the linear
framework.

The formulas given here can be used to obtain closed-form
solutions for simple graphs, as we showed for the pipeline graphs
used in enzyme kinetics (Eq. 13). However, this is a little misleading
because enumeration of spanning forests becomes rapidly
intractable as the graph becomes larger or less symmetric.
Moreover, as is evident by examining the algebraic terms in
Figure 2B and Figure 3B, every label in the graph can appear in
the formulas. There is both a combinatorial explosion and a global
parametric dependence. These challenges have long been recognised
when dealing with steady-state probabilities (Nam et al., 2022),
before the transient regime became mathematically accessible, and
several strategies have emerged for dealing with them.

First, when properties of interest are treated as functions of
substrate concentration, a great deal can be said about the resulting
rational algebraic structure, even when it is hard to calculate the
coefficients explicitly in terms of the edge labels (Thomson and
Gunawardena, 2009; Nam et al., 2022). As we saw with Eq. 14, the
algebraic structure for the mean FPT, τ(1)1,N(G), is highly informative,
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especially with respect to the limits of low or high concentration,
whichmay also be experimentally accessible. TheMichaelis–Menten
structure, or its reciprocal in Eq. 15, arises in a remarkably wide
range of biological contexts that are far removed from the 3-vertex
pipeline graph considered, in effect, by Michaelis and Menten
(Michaelis and Menten, 1913). The linear framework allows
general theorems to be proved, which characterise many of the
contexts in which the Michaelis–Menten structure does appear
(Wong et al., 2018). In this respect, the context discussed above,
of a pipeline graph with multiple reversible blocks, in which
substrate binds once in each block, falls outside the scope of the
theorems inWong et al. (2018). As suggested byMoffitt et al. (2010),
it seems plausible that the Michaelis–Menten structure may also
arise for more complicated graphs and an interesting problem arises
in characterising this new context.

Second, the question of when the Michaelis–Menten structure
arises is closely related to whether or not the graph satisfies the cycle
condition and can thereby reach a steady state of thermodynamic
equilibrium. If it can, there is a necessary and sufficient condition for
the emergence of the Michaelis–Menten structure; if it cannot, and
the graph reaches a non-equilibrium steady state, then only partial
sufficient conditions are known (Wong et al., 2018). Of course, the
pipeline example just mentioned cannot reach thermodynamic
equilibrium, as it contains irreversible transitions (Figure 5A). If
the cycle condition is satisfied, the complexity problem is
substantially reduced, insofar as calculating steady-state
probabilities is concerned. It is possible to find an alternative
basis element to ρ(G) in kerL(G) (Eq. 5), which is based on
paths rather than spanning trees, for which the combinatorial
explosion disappears and the parametric dependence becomes
local, not global (Nam et al., 2022). It is a very interesting
question as to whether transient quantities like FPTs show any
similar reduction in complexity for graphs that satisfy the cycle
condition.

Aside from the calculational complexity, the thermodynamic
issues also have a deep impact on biological function. The role of
energy expenditure in force generation or pattern formation has
been widely studied (Kolomeisky and Fisher, 2007; Karsenti, 2008)
but its significance for cellular information processing has been
more elusive (Wong and Gunawardena, 2020). In the latter domain,
unlike the two former ones, information processing can take place at
thermodynamic equilibrium, for instance, through binding and
unbinding. However, there is a limit to how well this can be
done, as first pointed out by Hopfield (1974). We have
introduced the concept of the Hopfield barrier, as the limit to
how well a given information processing task can be undertaken
by a mechanism that operates at thermodynamic equilibrium
(Estrada et al., 2016). For example, the Hill function with Hill
coefficient n is the universal Hopfield barrier for the sharpness of
input-output responses with n binding sites for the input (Nam et al.,
2022; Martinez-Corral et al., 2023). Another interesting question
arises as to whether there are also Hopfield barriers in the transient
regime. That is, if a graph satisfies the cycle condition and can reach
a steady state of thermodynamic equilibrium, are there limits on the
moments of the FPT distribution, τ(k)i,q (G), which can only be
exceeded if energy is expended to break the cycle condition,
allowing the system to reach a non-equilibrium steady state?

Third, the algebraic complexity of non-equilibrium steady states
can be reorganised to make the complexity more tractable (Çetiner
and Gunawardena, 2022). This breakthrough has enabled steady-
state calculations to be undertaken that were previously out of reach.
It is conceivable that similar kinds of reorganisation may also throw
light on the calculation of transient quantities. Finally, a fourth
potential approach to overcoming the complexity is to exploit the
recursive technique for enumerating spanning forests that was
developed by Chebotarev and Agaev (2002). While this technique
looks promising, it has yet to be properly exploited.

The methods outlined here bring the FPTs of Markov
processes into focus as manifestly positive rational algebraic
functions of the transition rates. This gives mathematical
access to them in a way that has been lacking in previous
treatments, which have not exploited graph theory and the
Matrix-Tree theorems. We hope this review will encourage
more use of the linear framework in cell and developmental
biology. We anticipate that, as we have found for steady states,
this exploration will lead to further general principles and
mathematical theorems that rise above the molecular
complexity that confronts us in biology.
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