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systems biology courses in harvard

SB200 - “a systems approach to biology”

johan paulsson

http://vcp.med.harvard.edu/teaching.html

12 lectures, handouts, preprints


http://vcp.med.harvard.edu/teaching.html

systems biology courses in the real cambridge

SB200 is diffusing across the pond ...

MPhil in Computational Biology

3.7 SB — Systems Biology

Johan Paulsson and Andreas Hilfinger (Harvard Systems Biology)

Detecting regulatory networks. Inverse engineering. Scale-free networks. Modeling
frameworks: Boolean logic, deterministic rate equations and stochastic processes - analyt-
ically and computationally. Kinetic design principles, e.g feedback loops, metabolic phase
transitions, multi-stability, and order versus disorder. Systematic kinetic approaches, e.g.
metabolic control analysis and biochemical systems theory. Biological model systems, e.g.
the lac operon, phages, plasmids and chemotaxis. Single cell and single molecule experi-
ments. Synthetic biology.

steve oliver's part lll course

Partlll Course in Systems Biology

Part lll Systems Biology really gives you a great insight into the current state of the field, putting
you ahead in the quest for understanding how biological components come together to form lit
Peter Ackermann, Part lll Systems Biology Student

Systems Biology is an integrated approach to the study of biclogy through experiment and the use of
computer models with both predictive and explanatory power. It is interdisciplinary, requiring the
participation of biological, physical, mathematical, engineering and computational sciences.

Genetics
Genomics DATA Proteomics
Metabolomics Engineering
; BIOLOGY _
Chemistry Physics
Network Analysis MODEL Computer Science

Mathematics



molecular biology

characterising the molecular components

systems biology
putting Humpty Dumpty back together again

how do the collective interactions of the

components give rise to the physiology and

pathology of the system?

Marc Kirschner, “The meaning of systems biology”, Cell 121:503-4 2005.



Leading Edge

In This Issue

Finding Strength in Numbers (and Equations)

As much as any discipline in modem biology, systems biology relies on
computation and mathematics to collect data, build models, and make
predictions. In their Minireview, Trey Ideker, Janusz Dutkowski, and Leroy
Hood (page 860) introduce strategies for leveraging accumulated knowl-
edge about biological systems fo boost signal-to-noise in analyzing large-
scale datasets. To illustrate the power of these tools and concepts, they
cite key studies that range from genome-wide association studies of disease
to kinase-phosphatase signaling networks. In a similar vein, Dana Pe’er and
Mir Hacohen (Perspective, page 864), using cancer as an example, outline
strategies and principles for identifying gene networks relevant to disease
phenotypes and discuss the prospects of network modeling for personal-
izing cancer treatment.

Taking their turn at the chalkboard, James Ferrell, Tony Tsai, and Qiong
Yang (Primer, page 874) guide us step-by-step through equations that model
the cell cycle to explain why certain circuits oscillate. Their demonstration
highlights the power of integrating knowledge gleaned from biochemistry
and molecular biclogy with mathematical modeling. Some problems,

however, require greater computing power. On this topic, Olga Troyanskaya (Book Review, page 842) comments on a recently
published advanced computing how-to guide aimed at biologists. She discusses the book's strengths and weaknesses, while
encouraging bench researchers to embrace complex computation and quantitative experiments.

Cell 144(6) 18 March 2011



a rather provisional syllabus

why mathematical models?
post-translational modification of proteins

microscopic cybernetics

w No= O

development and evolution



0. why mathematical models?



a revisionist history of biology

. suggests that it has some of the finest examples of how
quantitative reasoning and mathematical analysis have been
used to uncover how the world works

thomas hunt morgan walter cannon

ernest starling paul weiss

charles sherrington conrad waddington
august krogh arthur guyton
archibald vivian hill alan hodgkin
leonor michaelis andrew huxley
david keilin ernest mcculloch
otto warburg james till

j b s haldane niels jerne

r a fisher peter mitchell

sewall wright james black



otto warburg

otto meyerhoff hans krebs hugo theorell

But to devise and to carry out the experiments and to
develop the mathematical analysis of the measurements re-
quired very exceptional experimental and theoretical skill.

Hans Krebs, Otto Warburg: cell physiologist, biochemist and eccentric, OUP 1981



michaelis-menten revisited

principle of mass action

the rate of a reaction is proportional to the
product of the concentrations of the substrates,
taking stoichiometry into account

dC

— =RAER
rate constant dt
o
k dA {19 G utdlom ;. P
2A + 3B >C — = —2kA*B> =k
dt
B
i _ _3kA%B3
dt

P Waage & C Guldberg, “Studies concerning affinity”, ] Chem Edu 63:1044-7 1986. English
translation by H Abrash of original 1866 paper in Norwegian.

JG, “Modelling of interaction networks in the cell: theory and mathematical methods”, to appear
in E Egelman (editor), Comprehensive Biophysics Volume 9, Elsevier, 2011.



enzyme rates

mass action

S =P >

/nvertase
sucrose — » fructose + glucose

rate, dp/dt

rate, ap/dt

substrate concentration, S

saturation

substrate concentration, S



leonor michaelis and maud menten

enzyme-substrate complex
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Michaelis & Menten, “Die kinetik der Invertinwirkung”, Biochem Z, 49:333-69, 1913



britton chance

was the first to isolate an enzyme-substrate
complex and to measure on- and off-rates

The reaction veloecity constants are, however, lumped into one term,
the Michaelis constant, and are not separately determined. It is the
purpose of this research to determine these constants separately, and to
show whether the Michaelis theory is an adequate explanation of enzyme
mechanism. Moreover, studies on the over-all enzyme activity do not
permit a determination of whether the enzyme-substrate compound exists

in fact and, if it exists, whether such a compound is responsible for the i ey
enzyme activity. e
A cOn- = Wi AN
clusive proof of the Michaelis theory rests on such evidence., o
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B Chance, “The kinetics of the enzyme-substrate compound of peroxidase”, | Biol Chem,
151:553-77 1943



mathematics provides evidence for things unseen

“genes”

1866 1915 1953

“ion channels”

1976



time-scale separation eliminates internal complexity

the enzyme-substrate complex has been eliminated

— T

E+ S« ES »E + P o VinazS

dt Ky—+S8

the complex is assumed to come rapidly to steady-state

dbES

=0
dt

iIn comparison to slower catalytic activity

there is a framework for doing such calculations, that we will discuss later



unrealistic models can be (much) better

reverse reaction ignored by measuring initial rates

E+ S« ES~»>E + P

dependence of rates on pH and ionic strength ignored by buffering

careful arrangement of experimental conditions makes it
feasible to get away with an unrealistic model

L Michaelis, Die Wasserstoffionen-Konzentration: lhre Bedeutung Fur Die
Biologie Und Die Methoden lhrer Messung. 1914.



michaelis-menten, in summary

1. evidence for things unseen
2. time-scale separation eliminates internal complexity

3. unrealistic models can be better

what is important about a model is not merely that it fits the data
(its output) but the assumptions made to achieve that (its input)



back to the present

these days, (we think) we (sometimes) know most of the
molecular components

so what are models good for in the age of systems biology?

models provide evidence relating mechanism to function

and the means to interpret data mechanistically



evidence relating mechanism to function ...
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thin models - abstract the details

abstracting may give independence from details whose correctness is uncertain
or whose validity is context-specific, allowing general principles to emerge more
easily, but at the risk of becoming detached from experimental interpretation
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our analysis
provides the first self-consistent explanation for the generation
of distinct, stable compartments.

Reinhart Heinrich & Tom Rapoport, “Generation of non-identical compartments in vesicular
transport systems”, ] Cell Biol 168:271-80 2005.



interpeting data mechanistically

the data that we have is rarely the data that we want. for instance, we often have
to average over cellular populations but molecular mechanisms take place in
individual cells. a population average may not be representative of any cell in the
population.

dose response different mechanisms at
averaged over the population the single cell level
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Progesterone (pi) Increasing stimulus -

data never “speaks for itself” - it is always interpreted, by us!

Ferrell, Machleder, “The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes”,
Science 280:895-8 1998



elephant reconstruction for the visually challenged

an elephant is like ... a wall

o

like ... a fan { Ll
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like ... a tree



the physiologists were here before us ...

Models in analytical pharmacology are not meant to be descriptions,
pathetic descriptions, of nature; they are designed to be accurate descrip-
tions of our pathetic thinking about nature.

James Black, “Drugs from emasculated hormones: the principles of syntopic antagonism”,
Nobel Lecture, 1988
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