A systems approach to biology

SB200

Lecture 4 25 September 2008

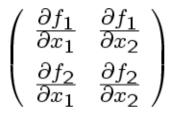
Jeremy Gunawardena

jeremy@hms.harvard.edu

Recap of Lecture 3

STABILITY TH. LINEARISATION TH.

Jacobian matrix



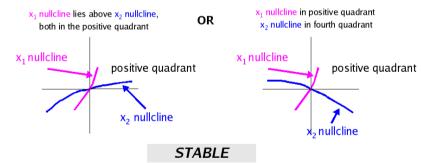
x₂ nullcline

matrix algebra

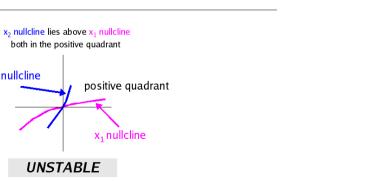
A ⁻¹ exists, iff, det A \neq 0	A-1	exists.	iff,	det	A ≠ ()
---	-----	---------	------	-----	-------	---

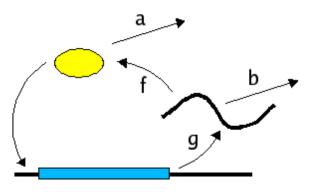
eigenvalues Ax = uxdet(A - uI) = 0

det AB = (det A).(det B)



stability of an autoregulatory loop





$$\frac{dx}{dt} = f(x)$$
 with steady state at $x = x_{st}$

- 1 dimensional
- $\mathbf{a} = \left(\frac{df}{dx}\right)\Big|_{x = x_{st}}$
 - dx/dt = ax

 $\mathbf{x}(t) = \exp(at)\mathbf{x}_0$

 $exp(a) = 1 + a + a^{2}/2 + a^{3}/3! + ...$ exponential

exp(a+b) = exp(a)exp(b)

n > 1 dimensional

$$A = (Df)|_{x = x_{st}}$$

dx/dt = Ax

$$\mathbf{x}(t) = \exp(\mathbf{A}t)\mathbf{x}_0$$

 $exp(A) = I + A + A^2/2 + A^3/3! + ...$ matrix exponential

exp(A+B) = exp(A).exp(B) provided AB = BA

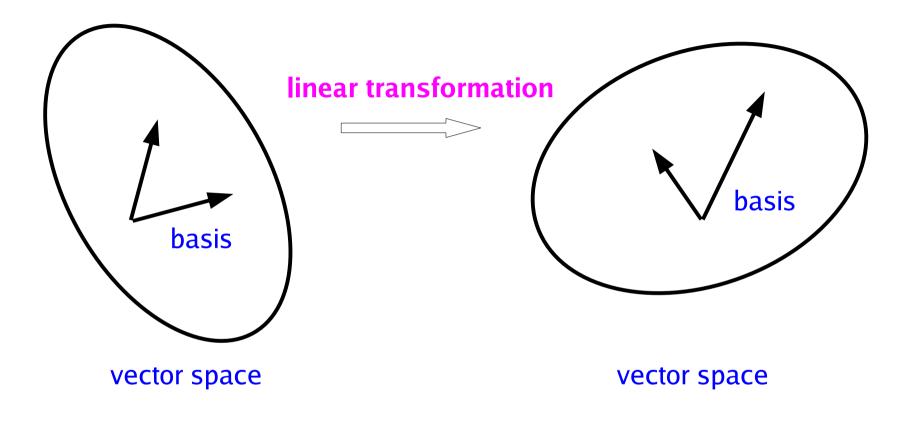
calculating exp(A)

matrices are like numbers – they can be added and multiplied together

except that multiplication is not commutative and not all non-zero matrices have an inverse

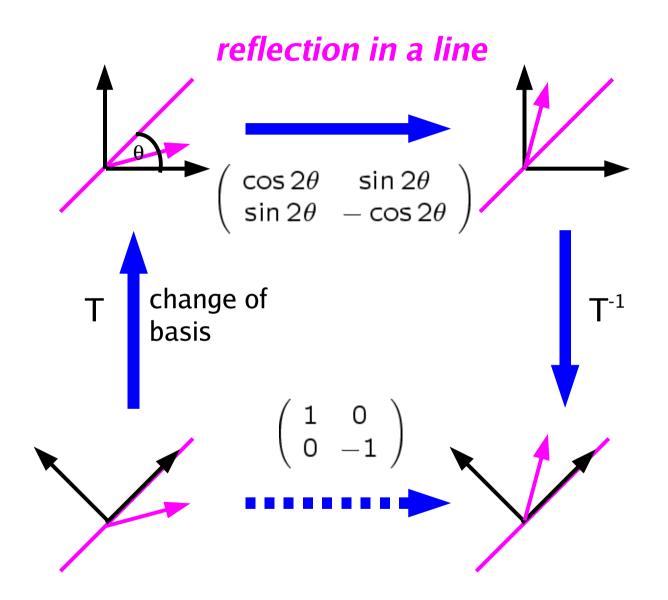
matrices ALSO represent linear transformations with respect to a chosen coordinate basis

> eigenvectors (when they exist) can give a basis in which the matrix is particularly simple



L(x + y) = L(x) + L(y)

 $\mathsf{L}(\lambda x) = \lambda \mathsf{L}(x)$



Change of basis corresponds to similarity of matrices

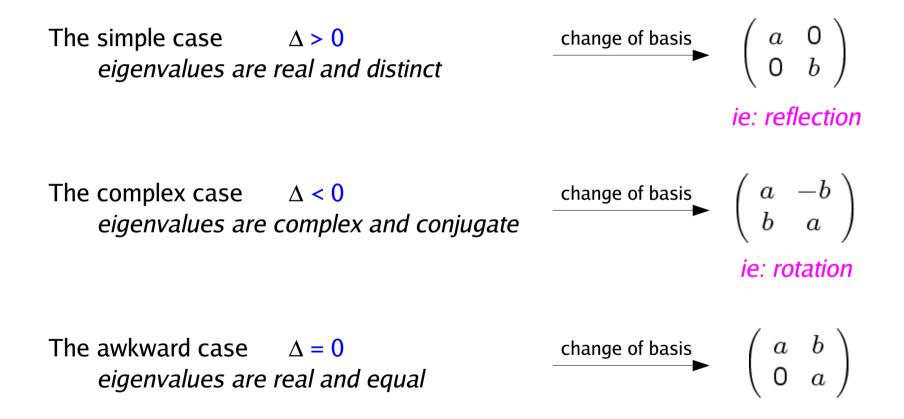
A and B are **SIMILAR** if $B = T^{-1}AT$

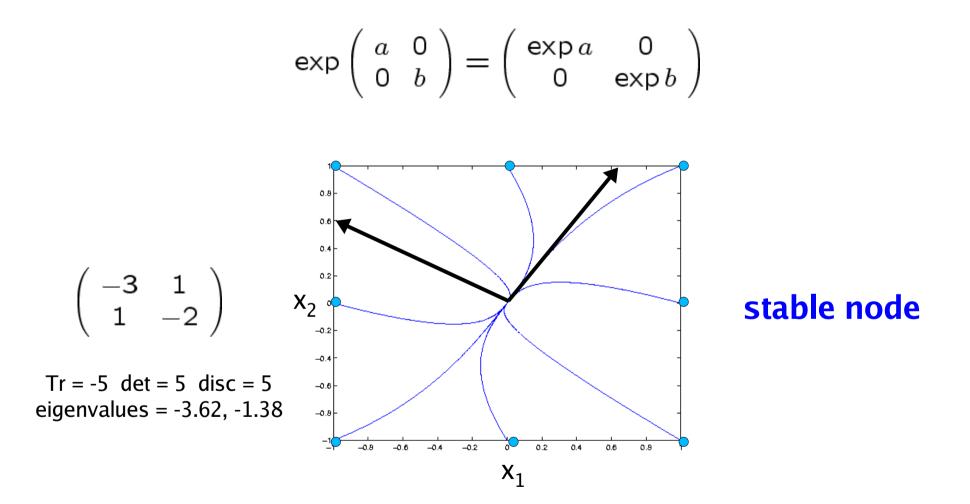
If A and B are similar then A and B have the same

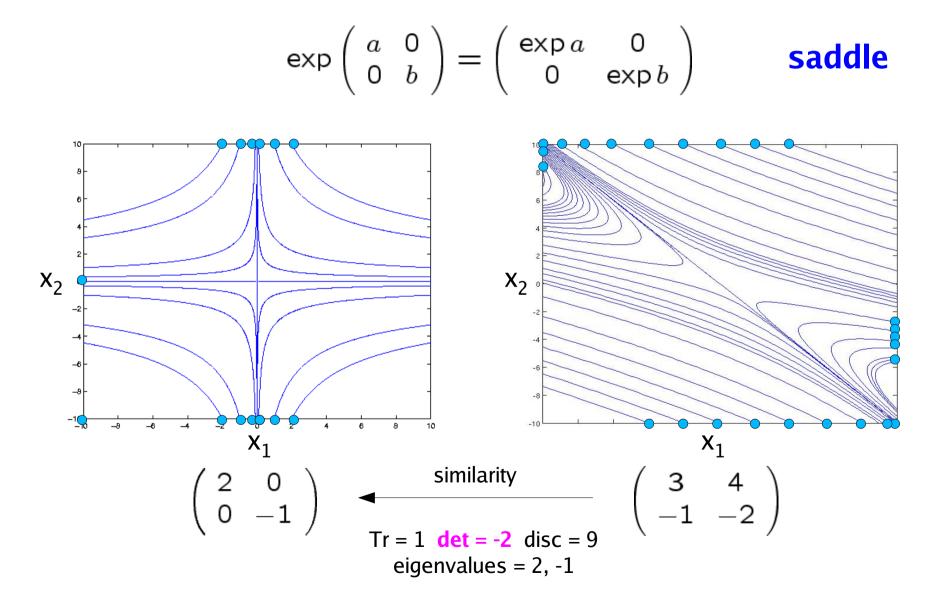
characteristic polynomial eigenvalues det and Tr How do we calculate exp(A)?

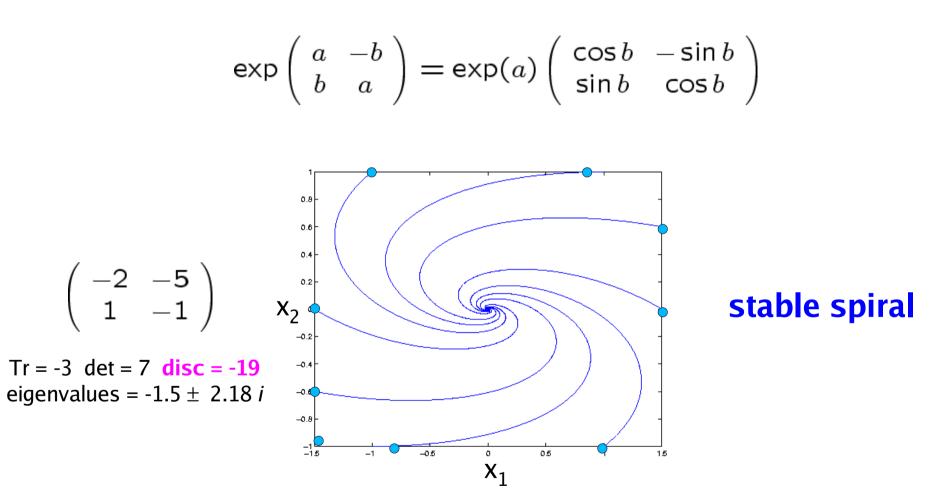
Find a change of basis in which A becomes simple $exp(T^{-1}AT) = T^{-1}exp(A)T$ $A = any 2 \times 2 matrix$

Δ = discriminant of the characteristic polynomial of A









Complex eigenvalues imply (damped) oscillation, with frequency given by the imaginary part of the eigenvalue