A systems approach to biology

SB200

Lecture 2 18 September 2008

Jeremy Gunawardena

jeremy@hms.harvard.edu

I do not hold formal office hours. Please send me an e-mail if you have questions or would like to arrange a time to meet. My lab is in Goldenson 504 on the Harvard Medical School campus.

jeremy@hms.harvard.edu

http://www.hms.harvard.edu/about/maps/quadmap.html

Recap of Lecture 1

systems biology

mathematical foundations

differential equations

role of mathematics

thick models

thin models -feedb ack control "an satz"

decision making

decisions, decisions, decisions - making the organism

www.xenbase.org,

developmental stages in Xenopus laevis

Manuel Thery & Michel Bornens, Institut Curie, Paris

decisions, decisions, decisions - running the organism

lymphatic system

haematopoiesis

decisions, decisions, decisions - protecting the organism Pathogen TCR virus bacteria fungus T cell T cell parasite Antigen Presenting Cell cell T cell T cell Self MHC Class II protein

T cells interrogating antigen-presenting cells *-f* riend or foe?

Mempel, Henrickson, von Andrian, lymph nodes occurs in three distinct phases", Nature **427**:154-9 2004 T -cell priming by dendritic cells in how do the molecular mechanisms (feedback control structures, etc) achieve

multiple states? decisiveness?

sensitivity?
resolution?
speed?

the lysis-lysogeny decision in viruses

phage lambda

HSV 1

HIV

phage lambda

lysis-lysogeny decision

Ptashne

A Genetic Switch: Phage Lambda Revisited 3rd Edition Cold Spring Harbor Laboratories Press 2004

phage lambda

Friedman & Court, *B* acteriophage λ : alive and well and still doing its thing," Curr Op Microbiology 4:201-7 2001

Dodd, Shearwin & Egan "Revisted gene regulation in bacteriophage λ " Curr Op Gen Dev **15**:145-52 2005 positive feedback control structure that exhibits decision making

synthetically engineered -

Isaacs et al, "*Prediction and measurement of an autoregulatory genetic module*", PNAS **100**:7714-9 2003

$$x_1 = protein concentration$$

 $x_2 = mRNA concentration$

state space

$$\frac{dx_1}{dt} = \lambda x_2 - ax_1$$

$$\frac{dx_2}{dt} = \frac{\alpha x_1}{k+x_1} - bx_2$$

 $(sec)^{-1}$ mRNA translation rate λ $(sec)^{-1}$ protein degradation rate а $(sec)^{-1}$ mRNA degradation rate b parameters $(M)(sec)^{-1}$ maximal gene expression rate α Mic haelis-Menten"c onstant (M) k

the first question to ask is are there any steady states?

in two dimensions, the way to work this out is to determine the **NULLCLINES**

 $dx_1/dt = 0 \qquad dx_2/dt = 0$

 $x_2 = \left(\frac{a}{\lambda}\right) x_1$ $x_2 = \left(\frac{\alpha}{b}\right) \frac{x_1}{k + x_1}$

steady states occur at the intersections of the nullclines

Two cases to consider

BIFURCATION

a qualitative change in dynamics due to variation of parameters

 $k \geq \alpha \lambda / ab$

λ	0.08	(sec) ⁻¹
a	0.02	$(sec)^{-1}$
b	0.1	(sec) ⁻¹
α	0.1	$(\mu M)(sec)^{-1}$
k	5	(μM)

 $\begin{array}{ll} \alpha\lambda/ab &= 4\\ k &= 5 \end{array}$

λ	0.08	(sec) ⁻¹
а	0.02	(sec) ⁻¹
b	0.1	$(sec)^{-1}$
α	0.1	$(\mu M)(sec)^{-1}$
k	2	(μM)

αλ/ab	= 4
k	= 2

any sufficiently small perturbation returns back to the steady state

unstable steady state

not stable - some perturbations do not return

You can prove instability by simulation but you can never prove stability

changing parameter values can cause a **bifurcation**

steady states can be **stable** or **unstable** *how can we tell the difference without simulation?*

this feedback loop has only one stable steady state: the 'of f''sta te is unstable. *how does phage lambda create a stable "off''sta te?*

1 dimensional dynamical system $\frac{dx}{dt} = f(x)$

df/dx = 0

1 dimensional dynamical system $\frac{dx}{dt} = f(x)$

1. find a steady state
$$x = x_{st}$$
, so that $\left(\frac{dx}{dt}\right)\Big|_{x=x_{st}} = f(x_{st}) = 0$
2. calculate the derivative of f at the steady state $\left(\frac{df}{dx}\right)\Big|_{x=x_{st}}$

- 3. if the derivative is negative then x_{st} is stable
- 4. if the derivative is positive then x_{st} is unstable
- 5. if the derivative is zero then x_{st} can be stable or unstable