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from a quantitative analytical solution

to a qualitative geometric perspective

quantitative to qualitative dynamics



nonlinear qualitative dynamics
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bifurcation – change in parameter values that gives rise to a qualitative change of 
the dynamics in the state space



state space “landscapes” and parameter “geography”
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nonlinear dynamics can be very complex

the dynamics may never reach a steady state. a trajectory may exhibit “sensitive 
dependence to initial conditions” (“chaos”) but remain within a bounded region of 
state space, giving rise to a “strange attractor”

“Does the flap of a butterfly's wings in Brazil set off a tornado in 
Texas?” 

http://www.chaoscope.org/index.htm

Olsen, Degn, “Chaos in biological systems”, Quart Rev Biophys 18:165-225 1985

Scott, Chemical Chaos, OUP 1993
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state space landscapes and cellular identity

1905-1975

Conrad Waddington

Slack, “Conrad Hal Waddington: the last renaissance biologist?”, Nature Rev Genetics 3:889-95 
2002. Huang, “Reprogramming cell fates: reconciling rarity with robustness”, Bioessays, 31:546-
60 2009; Hana, Saha, Jaenisch, “Pluripotency and cellular reprogramming: facts, hypotheses and 
unresolved issues”, Cell 143:508-25 2010. 

Sui Huang Rudolf Jaenisch
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one gene, two states

the first thing to calculate are the steady states of the dynamical system 
because they are the skeleton around which the dynamics takes place
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positive feedback by a gene on itself is a potential way to create bistability

nonlinear dynamical system

corresponds to GRF for 1 
TF binding site,  f1(x)



the x1 nullcline is the locus of points satisfying  

method of nullclines (2D systems only)

the x2 nullcline is the locus of points satisfying  
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but what is the stability of these steady states?

synthesis rates

degradation rates
weakness of 

positive feedback



linearisation (lecture 4-16)

nonlinear dynamical system

linearisation

linear system

Jacobian matrix of 
partial derivatives



stability of steady states (lecture 4-4)

put matrix in triangular form by 
Gaussian elimination

zeros of the characteristic 
polynomial

eigenvalues of the 
matrix

a nonlinear dynamical system is stable at a steady state if all the 
eigenvalues of its Jacobian matrix, evaluated at the steady state, have 
negative real parts

the matrix A has the eigenvalue     with eigenvector      if  



stability theorem for genetic auto-regulation

assume general transcription & translation functions, linear degradation and 
arbitrary (positive or negative) feedback

x1

x2



nullcline geometry determines stability

x1 nullcline, in the 1st quadrant, crosses above x2 nullcline, in the 1st or 4th quadrants

STABLE

UNSTABLE

x1 nullcline, in the 1st quadrant, crosses below x2 nullcline, in the 1st quadrant

see the “nullcline theorem” handout for details
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steady-state stability for positive feedback

how do we make bistability with the “off”state and the “on” state both stable? 

one stable steady state (“off”)
one stable (“on”) and one 

unstable (“off”) steady state



bistability requires cooperativity (“sharpness”)

positive feedback has to be combined with a sigmoidal (“S-shaped”) nullcline. 

x2

x1

a common way to introduce cooperativity is to assume some kind of Hill function

Hill function

Hill coefficient

this is “cooperativity” or “sharpness”



hill functions for bistability

activating repressing

nA = 1 nR = 4

Laszlo et al, “Multilineage transcriptional priming and determination of alternate hematopoietic 
cell fates”, Cell 126:755-66 2006

macrophage

neutrophil

transcriptional priming



hill functions for excitability

excitability – there is a single, stable steady 
state with a small stability region, outside of 
which trajectories make long excursions 
before returning to the steady state

n = 2, p = 1.5

Nanog-GFP
serum + LIF, 

2i

embryonic 
stem cells

Kalmar, Lim, Hayward, Munoz-Descalzo, Nichols, Garcia-Ojalvo, Martinez-Arias, “Regulated fluctuations 
in Nanog expression mediate cell fate decisions in embryonic stem cells”, PLoS Biol 7:e1000149 2009 



Hunchback (Hb) expression

Hill function

“consistent with the idea that Hb transcription is activated 
by cooperative binding of effectively five Bcd molecules”

pairwise 
cooperativity

Gregor, Tank, Wieschaus, Bialek, “Probing the limits to positional information”, Cell 130:153-64 
2007

the hill function fits data on sharp gene expression

early Drosophila embryo

it is widely assumed that gene regulatory sharpness corresponding to a Hill coefficient 
of k can be obtained from n = k binding sites



A V Hill, “The combinations of haemoglobin with oxygen and with 
carbon monoxide”, Biochem J 7:471-80 1913

Engel, “A hundred years of the Hill equation”, Biochem J 2013

Archibald Vivian Hill
1886 - 1977

“The Hill equation remains what Hill intended it to be: an empirical descriptor”

Weiss, “The Hill equation revisited: uses and misuses”, FASEB J 11:835-41 1997

“Despite its appealing simplicity, the Hill equation is not a physically realistic 
reaction scheme, raising the question of whether it should be abandoned in 
favor of realistic schemes; at the very least, its limitations should be more 
widely recognized”

but the hill function lacks justification

the Hill function was introduced to fit data on oxygen binding to haemoglobin



and is not a valid GRF

the degree n is the number of sites and the coefficient ck in the GRF is proportional to 
the steady-state probability of k sites out of n being occupied

this makes no physical sense for the Hill function ... even when the coefficient h is an 
integer



sharpness in gene regulation

“steepness” “position”

normalisation

measure sharpness of the gene regulation function using two properties – 
“steepness” and “position”

equilibrium GRF for 
a single TF



Hill functions are GRFs

Hill functions

Estrada, Wong, DePace, Gunawardena, “Information integration and energy expenditure in gene 
regulation”, Cell 166:234-44 2016

fitted Hill coefficient
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