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recap - solving linear ODEs
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has solutions which are linear combinations of terms of the form

1 %t

where Z; is a root of the characteristic polynomial

Z(S) = a,s" + (1-1*1—1*5'”_1 + -+ ai1s+ aog

and 7 is less than the number of times z; is repeated as a root




stability and the roots of Z(s)

the solution with any initial condition is a linear combination of terms

fjt‘*z“t
Euler's formula -
sine or cosine

Zy — Ay _I_ ?:-b»u, tjez-u.t — tj e(l-u_teib.ut

real part increasing power of t
(if z, is repeated)

imaginary part
increasing or decaying exponential depending on
whether a  is positive or negative, respectively

a decaying exponential of rate a > 0, no matter how small, will always overwhelm
a power of t, no matter how large,

hence, the solution with any initial condition will relax to O if all the roots of the
characteristic equation have negative real parts



maxwell's criterion for stability

It will be seen that the motion of a machine with its governor consists in general
of a uniform motion, combined with a disturbance which may be expressed as the
sum of several component motions. These components may be of four different

kinds :-

(1) The disturbance may continually increase.

(2) It may continually diminish.

(3) It may be an oscillation of continually increasing amplitude.
(4) It may be an oscillation of continually decreasing amplitude.

1831-1879

The first and third cases are evidently inconsistent with the stability of the
motion; and the second and fourth alone are admissible in a good governor. This
condition is mathematically equivalent to the condition that all the possible roots,
and all the possible parts of the impossible roots, of a certain equation shall be

negative.

a linear ODE is stable if the roots of its characteristic equation all have
negative real parts

] C Mawell, “On governors”, Proc Roy Soc, 16:270-83, 1868.



stability of negative feedback systems

d?

dt

dx
dt

T
a2—— + a1— + agxr = 0O

since aqg., a1, ap > 0 itiseasy tocheck that, if z is a root, then
Re(z) <O

so, maxwell need not have lost any sleep over the systems we have considered -
their steady states are all stable

stable



dynamical behaviour

a 2" order negative feedback system can always be normalised as follows:

positive coefficient of x is +1

i
( 1 ) d?x (25) dz J

dt? dt P =0

w2 W

w > O fundamental frequency (time)™

) > () damping ratio dimensionless

with these choices the characteristic polynomial has the following two roots

s=w(—0+1/8%—-1)



dynamical behaviour
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integral controllers
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proportional integral controllers
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PID controllers

we have considered the problem of controlling a very simple first-order system

dz
dt

but systems can be much more complicated

engineers have found that, it is usually sufficient to combine three mechanisms of
negative feedback control - proportional, integral and derivative (PID control) -
to achieve perfect adaptation with good dynamical behaviour

» integral control - responds to the past history of the system
« proportional control - responds to the current state of the system

» derivative control - responds to where the system is going in the future



in summary,

the Laplace transform converts differentiation by s (or t) into
multiplication by t (or s)

the solutzi_?ns of a linear ODE are linear combinations of terms of the
form t’¢”" where Zz; are the roots of the characteristic equation

the linear ODE is stable if, for all roots z; , Re(z;) < O

by combining different negative feedback mechanisms, such as Pl or PID
control, perfect adaptation can be achieved robustly and with good
dynamical behaviour




evidence for integral control - glucose
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Figure 4.7: Ewidence for integral control in glucose homeostasis, with the relevant data in the
yvellow boxes. a. Rate of insulin secretion, measured in pg/min, of an isolated rat pancreas
continuously perfused with buffer containing 300 mg/dL = 16.TmM glucoze (§1.6). Data points are
mean + the standard error of the mean from 13 normal rats. The dashed line shows the results of
a simulation that is not discussed here. Adapted from [83, Figure 2]. b Rate of glucagon secretion,
measured in ng/min, of an isolated rat pancreas continuously perfused with buffer containing no
glucose. Glucose at 20mM was added to the buffer as shown from 0 to 30 minutes. Data points
are mean + the standard error of the mean from 16 normal rats. Adapted from [155, Figure 5].

Grodsky, “A threshold distribution hypothesis for packet storage of insulin and its mathematical
modeling”, ] Clin Invest 51:2047-59 1972

Pagliara, ..., Matschinsky, “Insulin and glucose as modulators of the amino acid-induced glucagon
release in the isolated pancreas of alloxan and streptozotocin diabetic rats”, ) Clin Invest 55:244-
551975



evidence for integral control - glucose

it is possible for two opposing integral controllers to perfectly adapt, provided they
mutually inhibit each other
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Koeslag, Saunders, Terblanche, “A reappraisal of the blood glucose homeostat which
comprehensively explains the type 2 diabetes mellitus-syndrome X complex”, ] Physiol
549:333-46 2003



evidence for integral control - eye movement

INTEGRATING WITH NEURONS

D. A. Robinson

Department of Ophthalmology and Biomedical Engineering, The Johns
Hopkins University, School of Medicine, Baltimore, Maryland 21205

“The retina sense the error between the
eye (fovea) and the target and the system
turns the eye until the error is zero - a
simple  negative feedback scheme.
Moreover, when the goal is reached, a
constant eye deviation (output) s
maintained while the error (input) is zero.
But that is just whan an integrator does.”

Ann. Rev. Neurosci. 1989. 12: 3345
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the internal models principle

does perfect adaptation imply integral control?

if a linear system shows perfect adaptation to a set point, 77, in some
internal variable, & , when some parameter changes in a sustained manner,
then the system includes an integral controller

dx.
dt

= k(r —x)

for a proof, see (*) or the handout

Francis, Wonham, “The internal model principle of control theory”, Automatica 12:457-465
1976

(*) T-M Yi, Y Huang, M | Simon, ] Doyle, “Robust perfect adaptation in bacterial chemotaxis
through integral feedback control”, PNAS 97:4649-53 2000



linearisation at a steady state

if a nonlinear system has a steady state, then its dynamical behaviour in the
vicinity of the steady state can be approximated by a linear system

nonlinear system linear system
L~ f@) e
— = xr — = ay Y= — Ix
A dt dt

)
da

lr=LF*

f(z)

steady state

f(z«) =0



E coli chemotaxis

DNA

E coli navigates towards an attractant, or away from a repellent, by rotating its
flagella, alternating between “runs” (flagella rotating together) and “tumbles”
(flagella rotating apart). By changing the tumbling frequency, a bacterium can
navigate along a chemotactic gradient.

H Berg, E coli in Motion, Springer 2003



tumbling frequency shows perfect adaptation

E coli RP437 strain
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U Alon, M G Surette, N Barkai, S Leibler, “Robustness in bacterial chemotaxis”, Nature
397:168-71 1999

T-M Yi, Y Huang, M | Simon, | Doyle, “Robust perfect adaptation in bacterial chemotaxis
through integral feedback control”, PNAS 97:4649-53 2000



S cerevisiae osmolarity regulation

yeast are unicellular fungi whose external environment can exhibit changes in
osmolarity on fast and slow time scales

water water

minutes ~ hour
—>

hyperosmotic shock volume decrease glycerol accumulation
volume recovery



Hogl nuclear enrichment shows perfect adaptation

SHO1 deletion disables one
of the two pathways of Hogl
activation

in haploid SHO1- cells, sustained increase in external NaCl leads to transient
nuclear accumulation of the activated MAP kinase Hogl, measured by Hog1l-
YFP “nuclear enrichment”
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perfect adaptation - no steady-state error

D Muzzey, C Gomez-Uribe, | T Mettetal, A van Oudenaarden, “A systems-level analysis of
perfect adaptation in yeast osmoregulation”, Cell 138:160-71 2009



learning the inside from the outside

a linear system can be interrogated in such a way that its internal
architecture can be determined by its response to certain stimuli

VA AN VA AN
YAVAVAY YAVAVAY

complex input repeaters, complex output

—_— . —
amplifiers

f(#) z(t)

d
dt” +---+a 1—t + aox

force the system with a sinusoidal input and look at

the output
f(t) = et

1889-1976 1905-1982

Hendrik Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,
New York 1945



follow the sines

fi) =€ (L)) = - - it
e ENFes) 1 (s)
(Lx)(s) Z(s) (s —iw)Z(s) * Z(s)

if the system is stable, the roots of the characteristic polynomial, Z(s), have
negative real parts, so 2w cannot be a repeated root

:I‘(f) — Be-i;.uf + Z (_‘;r;t'r’iez.if _l_ Z D;_{:Tiezit
K i

-

.0, aS t — oo because of stability

after the transients have died down, the response of a stable linear
system to sinusoidal forcing is a sinusoidal output at the same frequency




but what is the (complex) factor B?

i d-n.—l d B iwt A iwt
an.dtﬂ_l_an—ldtn_l _I_""I_ala_l_a{] ( € ) — A€

B(an(iw)"+a,1(iw)" " 4 a1 (iw)+ag) = A

p= ()4 =t

Z(iw)

the transfer function is the reciprocal of the characteristic polynomial

(Lx)(s) _ 1
(Lf)(s)  Z(s)

or the ratio of the laplace transform of the output to the laplace transform of the
input, when the initial conditions are all zero




transfer functionology

it is easy to work out transfer functions from a modular description
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