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recap – solving linear ODEs

has solutions which are linear combinations of terms of the form

where        is a root of the characteristic polynomial

and       is less than the number of times       is repeated as a root



stability and the roots of Z(s)

a decaying exponential of rate a > 0, no matter how small, will always overwhelm 
a power of t, no matter how large,

the solution with any initial condition is a linear combination of terms 

Euler's formula – 
sine or cosine

increasing power of t 
(if zu is repeated)

increasing or decaying exponential depending on 
whether au is positive or negative, respectively

real part

imaginary part

hence, the solution with any initial condition will relax to 0 if all the roots of the 
characteristic equation have negative real parts



1831-1879

maxwell's criterion for stability

a linear ODE is stable if the roots of its characteristic equation all have 
negative real parts

J C Mawell, “On governors”, Proc Roy Soc, 16:270-83, 1868. 



stability of negative feedback systems

since                                           it is easy to check that, if z is a root, then

so, maxwell need not have lost any sleep over the systems we have considered – 
their steady states are all stable

stable



dynamical behaviour

coefficient of x is +1

(time)
-1

dimensionless

with these choices the characteristic polynomial has the following two roots 

a 2nd order negative feedback system can always be normalised as follows:

positive

fundamental frequency

damping ratio



undamped

underdamped

critically damped

overdamped

dynamical behaviour



integral controllers

r = 2, b = 2, ki = 1

r = 2, b = 2, ki = 3

r = 2, b = 2, ki = 0.4

r = 2, b = 2, ki = 50

= 1.58

overdamped

= 1
critically damped

= 0.58

underdamped

= 0.14

“ringing” or “hunting”



r = 2, b = 2, ki = 50, kp = 10r = 2, b = 2, ki = 50, kp = 13

= 0.85

underdamped

= 1.06

overdamped

proportional integral controllers



PID controllers

we have considered the problem of controlling a very simple first-order system 

but systems can be much more complicated

engineers have found that, it is usually sufficient to combine three mechanisms of 
negative feedback control – proportional, integral and derivative (PID control) – 
to achieve perfect adaptation with good dynamical behaviour 

● integral control – responds to the past history of the system

● proportional control – responds to the current state of the system

● derivative control – responds to where the system is going in the future



in summary,

the solutions of a linear ODE are linear combinations of terms of the 
form           where      are the roots of the characteristic equation

by combining different negative feedback mechanisms, such as PI or PID 
control, perfect adaptation can be achieved robustly and with good 
dynamical behaviour

the linear ODE is stable if, for all roots      ,

the Laplace transform converts differentiation by s (or t) into 
multiplication by t (or s)



evidence for integral control – glucose

Grodsky, “A threshold distribution hypothesis for packet storage of insulin and its mathematical 
modeling”, J Clin Invest 51:2047-59 1972

Pagliara, ..., Matschinsky, “Insulin and glucose as modulators of the amino acid-induced glucagon 
release in the isolated pancreas of alloxan and streptozotocin diabetic rats”, J Clin Invest 55:244-
55 1975

insulin glucagon



evidence for integral control – glucose 

it is possible for two opposing integral controllers to perfectly adapt, provided they 
mutually inhibit each other

Koeslag, Saunders, Terblanche, “A reappraisal of the blood glucose homeostat which 
comprehensively explains the type 2 diabetes mellitus-syndrome X complex”, J Physiol 
549:333-46 2003

insulin
producing

glucagon
producing



evidence for integral control – eye movement

“The retina sense the error between the 
eye (fovea) and the target and the system 
turns the eye until the error is zero – a 
simple negative feedback scheme. 
Moreover, when the goal is reached, a 
constant eye deviation (output) is 
maintained while the error (input) is zero. 
But that is just whan an integrator does.”



the internal models principle

Francis, Wonham, “The internal model principle of control theory”, Automatica 12:457-465 
1976

if a linear system shows perfect adaptation to a set point,     , in some 
internal variable,     , when some parameter changes in a sustained manner, 
then the system includes an integral controller 

does perfect adaptation imply integral control?

for a proof, see (*) or the handout

(*) T-M Yi, Y Huang, M I Simon, J Doyle, “Robust perfect adaptation in bacterial chemotaxis 
through integral feedback control”, PNAS 97:4649-53 2000



linearisation at a steady state

if a nonlinear system has a steady state, then its dynamical behaviour in the 
vicinity of the steady state can be approximated by a linear system

steady state

nonlinear system linear system



E coli chemotaxis

H Berg, E coli in Motion, Springer 2003

E coli navigates towards an attractant, or away from a repellent, by rotating its 
flagella, alternating between “runs” (flagella rotating together) and “tumbles” 
(flagella rotating apart). By changing the tumbling frequency, a bacterium can 
navigate along a chemotactic gradient.



squares - unstimulated cells)
circles - 1mM aspartate at t = 0 

each data point averaged over 100-400 cells 
for 10 secs

E coli RP437 strain

U Alon, M G Surette, N Barkai, S Leibler, “Robustness in bacterial chemotaxis”, Nature 
397:168-71 1999

tumbling frequency shows perfect adaptation

T-M Yi, Y Huang, M I Simon, J Doyle, “Robust perfect adaptation in bacterial chemotaxis 
through integral feedback control”, PNAS 97:4649-53 2000

population average 
returns to its set point 



S cerevisiae osmolarity regulation

yeast are unicellular fungi whose external environment can exhibit changes in 
osmolarity on fast and slow time scales

hyperosmotic shock

water

volume decrease glycerol accumulation
volume recovery

water

minutes ~ hour



population average returns to its set point 
perfect adaptation - no steady-state error

cell-to-cell variation is low

Hog1 nuclear enrichment shows perfect adaptation

in haploid SHO1- cells, sustained increase in external NaCl leads to transient 
nuclear accumulation of the activated MAP kinase Hog1, measured by Hog1-
YFP “nuclear enrichment”

SHO1 deletion disables one 
of the two pathways of Hog1 

activation

D Muzzey, C Gomez-Uribe, J T Mettetal, A van Oudenaarden, “A systems-level analysis of 
perfect adaptation in yeast osmoregulation”, Cell 138:160-71 2009



learning the inside from the outside

a linear system can be interrogated in such a way that its internal 
architecture can be determined by its response to certain stimuli

complex outputcomplex input repeaters, 
amplifiers

1905-19821889-1976

force the system with a sinusoidal input and look at 
the output

Hendrik Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 
New York 1945



follow the sines

if the system is stable, the roots of  the characteristic polynomial,          , have 
negative real parts, so       cannot be a repeated root 

because of stability

after the transients have died down, the response of a stable linear 
system to sinusoidal forcing is a sinusoidal output at the same frequency



but what is the (complex) factor B?

the transfer function is the reciprocal of the characteristic polynomial

or the ratio of the laplace transform of the output to the laplace transform of the 
input, when the initial conditions are all zero



transfer functionology

it is easy to work out transfer functions from a modular description 
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