dynamic processes in cells (a systems approach to biology)

jeremy gunawardena department of systems biology harvard medical school

lecture 3 8 september 2016

solving linear ODEs of order 1

the first-order, linear ODE

$$\frac{dx}{dt} = ax$$

has the unique solution

initial condition

$$x(t) = e^{at}x(0)$$

where the exponential function $e^t = \exp(t)$ is defined by

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{3.2} + \dots + \frac{t^{n}}{n!} + \dots$$

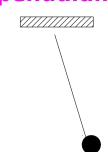
(this definition works generally for complex numbers or matrices *)

* see the lecture notes "Matrix algebra for beginners, Part III"

solving linear ODEs of order 2

pendulum

the second-order, linear ODE
$$\qquad \frac{d^2x}{dt^2} = -ax \qquad a > 0$$



initial conditions

has solutions $\cos(\sqrt{a}t)$ for x(0) = 1 and $(dx/dt)|_{t=0} = 0$

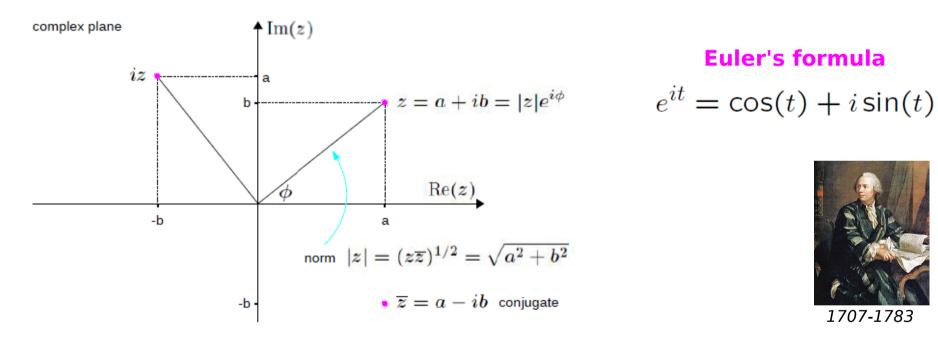
 $\sin(\sqrt{a}t)$ for x(0) = 0 and $(dx/dt)|_{t=0} = \sqrt{a}$ and

or, as power series,

$$\cos(t) = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{(2k)!} \qquad \sin(t) = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k+1}}{(2k+1)!}$$

the complex numbers

numbers written in the form a+ib with a, b ordinary "real" numbers and $i^2=-1$



Euler's formula

$$e^{it} = \cos(t) + i\sin(t)$$

1707-1783

the trigonometric functions are exponential functions over the complex numbers

$$\cos(t) = \frac{e^{it} + e^{-it}}{2} \qquad \sin(t) = \frac{e^{it} - e^{-it}}{2i}$$

solving linear ODEs of order n

COMPLEX EXPONENTIALS ARE ALL YOU NEED (ALMOST*)

the solution of any linear ODE, no matter what its order, is (almost*) a linear combination of complex exponentials

$$\sum_{i} \lambda_{i} e^{z_{1}t}$$

where z_i are complex numbers determined by the coefficients and λ_i are complex numbers determined by the initial conditions

st you also need powers of t $t^j e^{z_i t}$

the Laplace transform

transforms a function x(t) of t into a function $(\mathcal{L}x)(s)$ of s

1749-1827

$$(\mathcal{L}x)(s) = \int_0^\infty e^{-st} x(t) dt \quad Re(s) > c$$

the integral is defined ("converges") for ${\bf s}$ sufficiently large, provided x(t) does not increase "too fast"

s may take complex values, in which case the integral is defined for the real part of **s** sufficiently large – so that the Laplace transform is defined in some right half plane of the complex numbers

using it to solve linear ODEs

the Laplace transform converts **differentiation by t** into **multiplication by s**, thereby transforming calculus into algebra

1850-1925

- 1. apply the Laplace transform
- 2. express the Laplace transform of the solution as a function of s
- 3. break up this function of s into a linear combination of functions whose Laplace transforms are known (provided in a Table)
- 4. use the Table to write down the solution
- 5. remember Oliver Heavside

Paul Nahin, Oliver Heaviside. The Life, Work and Times of an Electrical Genius of the Victorian Age, Johns Hopkins University Press, 1988; Bush, Operational Circuit Analysis, John Wiley, 1929

Vaneevar Bush, **Operational Circuit Analysis**, John Wiley, 1929. Bush wrote that readers would "frequently turn for inspiration and background to Heaviside's own works, of which this is in some sense an interpretation"

properties of the Laplace transform

1. it converts differentiation by t into multiplication by s

$$\mathcal{L}\left(\frac{df}{dt}\right) = s(\mathcal{L}f) - f(0)$$
initial condition

2. it converts multiplication by t into differentiation by s

$$\mathcal{L}(tf(t)) = -\frac{d}{ds}(\mathcal{L}f)(s)$$

properties of the Laplace transform

3. it is linear

$$\mathcal{L}(\lambda_1 x_1(t) + \lambda_2 x_2(t)) = \lambda_1(\mathcal{L}x_1)(s) + \lambda_2(\mathcal{L}x_2)(s)$$

4. it is one-to-one (for our purposes)

if
$$(\mathcal{L}f)(s) = (\mathcal{L}g)(s)$$
 then $f(t) = g(t)$

f(t)	$(\mathcal{L}f)(s)$	
1	$\frac{1}{s}$	
t^n	$\frac{n!}{s^{n+1}}$	TABLE of Laplace
e^{at}	$\frac{1}{s-a}$	transforms
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	
$\frac{d^n f}{dt^n}$	$s^{n}(\mathcal{L}f)(s) - \sum_{r=0}^{n-1}$	$\int_{0}^{\infty} s^{n-r-1} \frac{d^{r}f}{dt^{r}}(0)$
		initial conditions

solving linear ODEs with the Laplace transform

$$\frac{dx}{dt} + ax = b$$

1. apply the Laplace transform to both sides

$$\mathcal{L}(\frac{dx}{dt} + ax) = \mathcal{L}(b)$$

2. use the properties of $\mathcal L$ and the TABLE to simplify and solve for $\mathcal Lx$

$$s(\mathcal{L}x) + a(\mathcal{L}x) = \frac{b}{s} + x(0)$$

$$(\mathcal{L}x) = \frac{b}{s(s+a)} + \frac{x(0)}{s+a}$$

solving linear ODEs with the Laplace transform

$$(\mathcal{L}x) = \frac{b}{s(s+a)} + \frac{x(0)}{s+a}$$

3. use **partial fractions** to rewrite the RHS in terms of functions in the TABLE

$$\frac{b}{s(s+a)} = \left(\frac{b}{a}\right) \left(\frac{1}{s} - \frac{1}{s+a}\right)$$

4. now use the TABLE again to deduce what the solution must have been

$$x(t) = \frac{b}{a} + (x(0) - \frac{b}{a})e^{-at}$$

partial fractions

3. use partial fractions to rewrite the RHS in terms of functions in the TABLE

$$\underbrace{s(s+a)} = \left(\frac{b}{a}\right) \left(\frac{1}{s} - \frac{1}{s+a}\right)$$

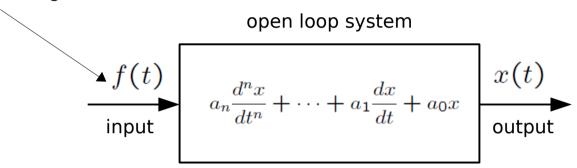
this depends on the linear factors of the denominator polynomial

$$s^2 + as = s(s+a)$$

which determine where the denominator polynomial becomes 0, at s = 0 and s = -a

the general linear system

"driving" or "forcing" function



$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_1 \frac{dx}{dt} + a_0 x = f(t)$$

applying the Laplace transform

$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_1 \frac{dx}{dt} + a_0 x = f(t)$$

the Laplace transform converts differentiation by t into multiplication by s

$$\mathcal{L}\left(\frac{d^{j}x}{dt^{j}}\right) = s^{j}(\mathcal{L}x)(s) - \sum_{u=0}^{j-1} s^{j-u-1} \frac{d^{u}x}{dt^{u}}(0)$$

applying the Laplace transform to both sides of the equation

depends only on the initial conditions

$$(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0)(\mathcal{L}x) - c(s) = (\mathcal{L}f)(s)$$

resembles the original differential equation depends only on the forcing

the characteristic polynomial

solve for
$$\mathcal{L}x$$

$$\mathcal{L}x = \frac{\mathcal{L}f + c(s)}{a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0}$$
 characteristic polynomial

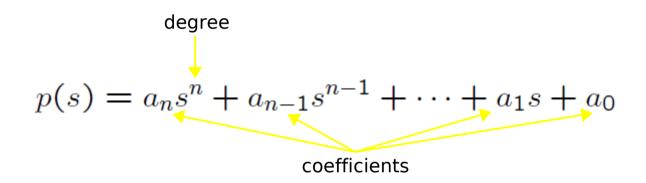
the denominator resembles the original differential equation via the relationship

$$\frac{d^jx}{dt^j} \quad \longleftarrow \quad s^j$$

the numerator is determined by the forcing term and the initial conditions

polynomials in one variable

step 3 (partial fractions) requires the linear factors of the characteristic polynomial



a linear factor (s-a) of p(s) corresponds to a root (or a zero)

$$p(a) = 0$$
 if, and only if, $p(s) = (s - a)q(s)$

a polynomial of degree n can have no more than n roots, counted with multiplicity

fundamental theorem of algebra

a polynomial of degree n with complex coefficients always has n complex roots:

$$p(s) = a_n(s-z_1)(s-z_2)\cdots(s-z_n)$$

where $z_1, \cdots z_n$ are complex numbers

1777-1855

this theorem was first properly stated in Gauss's doctoral thesis in 1799: "Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse"

the complex numbers are "algebraically closed"

however, for n > 4, there is no algebraic formula for the roots in terms of the coefficients

solving linear ODEs - partial fractions

express the characteristic polynomial in terms of its roots, collecting together repeated roots

$$Z(s) = a_n(s-z_1)^{r_1}(s-z_2)^{r_2}\cdots(s-z_k)^{r_k}$$

factor in characteristic polynomial

term in partial fraction expansion

root z; appears once only

$$(s-z_i)$$

$$\frac{A_i}{s-z_i}$$

$$\begin{array}{c} \text{root } z_j \text{ appears} \\ r_j \text{ times} \end{array}$$

$$(s-z_j)^{r_j}$$

$$(s-z_j)^{r_j}$$

$$\frac{A_{j,1}}{(s-z_j)} + \frac{A_{j,2}}{(s-z_j)^2} + \dots + \frac{A_{j,r_j}}{(s-z_j)^{r_j}}$$

$$=\sum_{u=1}^{r_j}\frac{A_{j,u}}{(s-z_j)^u}$$

solving linear ODEs - repeated roots

step 3 becomes the following partial fraction expansion

$$\mathcal{L}(x)(s) = \frac{c(s)}{Z(s)} = \left(\sum_{u=1}^{r_1} \frac{A_{1,u}}{(s-z_1)^u}\right) + \dots + \left(\sum_{u=1}^{r_k} \frac{A_{k,u}}{(s-z_k)^u}\right)$$

the solution can then be read off from the TABLE as in step 4

$$\frac{A_{j,1}}{(s-z_j)} \longrightarrow e^{z_j t}$$

$$\frac{A_{j,u}}{(s-z_j)^u} \longrightarrow t^u e^{z_j t}$$

powers of t in the solution arise from repeated roots of the characteristic polynomial

solving linear ODEs - the general solution

$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_1 \frac{dx}{dt} + a_0 = 0$$

has solutions which are linear combinations of terms of the form $\ t^j e^{z_i t}$

where z_i is a root of the characteristic polynomial

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

and $\,j\,$ is less than the number of times $\,z_i\,$ is repeated as a root

complex conjugate roots conspire to make the overall solution real

dynamical stability

the stability of a linear ODE is determined by how it behaves in the absence of any forcing

$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_1 \frac{dx}{dt} + a_0 x = 0$$

when its steady state occurs at x = 0

the system is STABLE if it relaxes back to 0 from any initial condition

