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Topics for this lecture

What is systems biology?

Why do we need mathematics and how is it used?

Mathematical foundations – dy namical systems.

Cellular decision making



How do the collective interactions of the 
components give rise to the physiology 
and pathology of the system?

What is systems biology?

Marc Kirschner, “ The meaning of systems biology”, Cell 121:503-4 2005.



Topdown
“omics”
system  =  whole cell / organism
model  =  statistical correlations
data  =  highthroughput, poor quality

too much data, not enough analysis

Bottomup
“mechanistic”
system  =  network or pathway
model  =  mechanistic, biophysical
data  =  quantitative, singlecell

not enough data, too much analysis



Why do we need mathematics?

Descriptive Analytical

1822-18841809-1882

There have always been two traditions in biology ...



Mathematics allows you to guess the invisible components

before anyone works out how to find them ...

Bacterial potassium channel closed (left) and open (right) – 
Dutta & Goodsell, “Mo lecule of the Month” , Feb 2003, PDB.



but these days we know many of the components 
–  and there are an awful lot of them –  

so how are models used in systems biology?



Thick models

Dennis Noble, “ Modeling the heart – from genes to cells to the whole organ” , Science 
295:1678-82 2002.

More detail leads to improved quantitative prediction 

simulation of electrical activity in a mechanically realistic whole heart



Bray, Levin & Lipkow, “ The chemotactic behaviour of computer-based surrogate bacteria” , 
Curr Biol 17:12-9 2007.

E coli biochemical circuit

screen shot of simulated E coli swimming 

in 0.1M Asp

Thick models



Thick models

We need better tools –  conceptual and computational –  for 
specifying, building and analysing systems with high levels of 
molecular complexity. See Walter's section.

Hlavacek, Faeder, Blinov, Posner, Hucka, Fontana, “Rules  for modelling signal 
transduction systems” , Sci STKE doi:10.1126/stke.3442006re6 2006.

Mallavarapu, Thomson, Ullian, Gunawardena, “ Programming with models: modularity and 
abstraction provide powerful capabilities for systems biology” , Roy Soc Interface 
doi:10.1098/rsif.2008.0205 2008.



Thin models

Feedback control structures determine the robust system behaviours

negative feedback

positive feedback

Feedback control structure of the G2/M transition in Xenopus.

Pomerening, Kim & Ferrell, “Sy stems level dissection of the cell 
cycle oscillator” , Cell 122:565-78 2005.

homeostasis

clocks & rhythms

decision making



“ All of this argues that in addition to the more typical intuitive interpretation of 
immunological data, it is now time to add the power of mathematics, systems analysis and 
quantitative cell-based modelling.”

Ron Germain
“ The art of the probable: system control in the adaptive immune system”

Science 293:240-5 2001

“ Simple as they are such systems show surprising behaviours. To understand them, 
unaided intuition is not enough; we need mathematics.”

Julian Lewis
“ Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish 

somitogenesis oscillator”
Current Biology 13:1398-408 2003

“ Very often my expectations turned out to be wrong and an important lesson I learned 
from these manual computations was the complete inadequacy of one's intuition in trying 
to deal with a system of this degree of complexity.”

Andrew Huxley
“ The quantitative analysis of excitation and conduction in nerve”

Nobel Lecture, 11 December 1963

“ Perhaps the most pressing need is to develop the appropriate theoretical approaches to 
analyse the management of information flow and to investigate the logic systems that are 
responsible for that flow”

Paul Nurse
“ Life, logic and informationr”

Nature 454:424-6 2008



mathematical foundations



explicit representation of internal state

Dynamical system Input-output system



Representation of internal state

deterministic
concentration of X as a function of time

spatial
concentration  of X as a function of 

space and time

stochastic (Johan's section)
probability of a certain number of X

as a function of time (or space and time)

X

agent-based (Walter's section)
each individual molecule is independently 

represented



Simple example of production and degradation



x

constant 
production

a 
first order 

degradation

state variable parameters

initial condition

If x
0
 = a/, then x

t
 = a/ for all t. This is a steady state.

steady state    dx/dt = 0.



time

x
a = 10
 = 2

x
0
 = 30

x
0
 = 2

steady state a/ = 5



STATE SPACE

steady state

a

 PARAMETER SPACE



PARAMETER SPACE
a

1
, ..., a

m
   m dimensions

● trajectories always exist
● they never cross
● but they usually

  cannot be written down analytically

STATE SPACE
x

1
, ..., x

n
   n dimensions

initial condition
trajectory

PARAMETER SPACE
a

1
, ..., a

m
   m dimensions



two important issues that we will not discuss in this section

● the parameter problem

● cell-to-cell variability



the parameter problem

PHYSICIST –  avoid them

ENGINEER – fit them

MATHEMATICIAN  – (1) reduce them (2) ignore them

BIOCHEMIST –  measure them

CHEMIST – calculate them 

SYSTEMS BIOLOGIST –  all of the above 

robustness



cell-to-cell variability

a model of a molecular network describes what happens in a single cell 
but each cell in a population or tissue may behave differently

cell response

ce
ll 

nu
m

be
r

cell response

noise

average is not representative of any cell 

Lahav, Rosenfeld, Sigal, Geva-Zatorsky, Levine, Elowitz, Alon, “Dy namics of the p53-
Mdm2 feedback loop in individual cells”,  Nat Genet 32:142-50 2004.

Johan's section

Korobkova, Emonet, Vilar, Shimizu, Cluzel, “ From molecular to behavioural variability in a 
single bacterium” , Nature 428:574-8 2004.


