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In recent work by Angeli and the authors, it was shown that the stability and global behavior of strongly monotone dynamical systems
may be profitably studied using a technique that involves feedback decompositions into “well-behaved” subsystems. The present paper
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1. Introduction

The work of Hal Smith on monotone systems constitutes a deep and beautiful contribution to pure math-
ematics, as well as to mathematical biology and specifically the analysis of biochemical networks. In this
paper, written on the occasion of Hal’s 60th birthday, we present new theoretical results regarding the
detection of multiple stable states in a class of monotone feedback systems, and we illustrate our results
with an application to a model of a transcriptional gene and protein network.

Monotone Systems

Monotone dynamical systems have been present in the mathematical literature for many years, in systems
of ordinary and partial differential equations. The simplest example of a monotone system is that of a
differentiable cooperative dynamical system

ẋ = g(x), (1)

which is characterized by the property that ∂gi(x)/∂xj ≥ 0 for all i 6= j and all x in the domain of
definition. More generally, monotone systems are associated with positive feedback among the variables
x1, . . . , xn, a property that can be verified by looking at a simple signed digraph associated to the system
(see Section 2).

During the 1980’s, M. Hirsch performed a general study of monotone dynamical systems in papers
such as [18,19]. In what is arguably the most important result available for abstract monotone systems, he
showed that almost all bounded solutions of a strongly monotone system (definitions below) are convergent
towards the set of equilibria [19]. Under mild additional smoothness and boundedness assumptions, almost
every solution of the system (1) converges towards one of its equilibria. The book by H. Smith [36] is the
standard introduction to the study of monotone dynamical systems.
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Multistability

A multistable system is one that admits several discrete, alternative stable steady-states. Multistable
systems, and associated phenomena of hysteresis and oscillations, are central to molecular systems biology.
Indeed, it has been frequently noted that even relatively simple gene and protein signaling networks have
the potential to produce multistability [5, 16, 17, 24, 27, 34, 38, 43, 44]. Among the earlier works are those
using bistable system models as a mechanism to explain the lambda phage lysis-lysogeny switch as well as
the hysteretic lac repressor system [30,32]. In the current systems biology literature, one finds bistability in
studies of the production of self-sustaining biochemical memories of transient stimuli [28,45], the generation
of switch-like biochemical responses, especially in MAPK cascades in animal cells [3, 4, 8, 23] the rapid
lateral propagation of receptor tyrosine kinase activation [33], the establishment of cell cycle oscillations
and mutually-exclusive cell cycle phases in organisms such as Xenopus and S. cerevisiae [11,31,35], models
of Drosophila development based on steady states of morphogen expression [22], and many other processes.

Monotone Decompositions

A general strategy for the detection of multistability, advanced by one of the authors and D. Angeli in [1,2],
is the analysis of gene regulatory networks that either are themselves monotone or can be studied using
monotone systems ideas. The present paper will be solely concerned with monotone dynamical systems
themselves. In [2], the authors consider a monotone dynamical system (1), and inspired by concepts from
control theory, they carry out a decomposition procedure which is akin to replacing one of the variables
in the expression for g(x) by a real parameter u (see the definitions below, and the example in Section 6).
The study of the resulting parametrized system

ẋ = f(x, u) (2)

then allows them to derive conclusions about the original system (1).
More precisely, [2] considers a parametrized system (2), together with a function h(x), such that ẋ =

f(x, h(x)) = g(x) forms the original system (1). Several monotonicity conditions are assumed, which are
satisfied e.g. if ∂fi/∂xj ≥ 0 for all i 6= j, ∂fi/∂u ≥ 0 for all i, and h′i(u) ≥ 0 for all i. Furthermore, it is
assumed that (2) satisfies a steady state response property: for every fixed value v, the system ẋ = f(x, v)
converges globally towards some state X(v). Then a plot of the function k(u) = h(X(u)) is sufficient to
establish the number of equilibria of the original system (1) and whether each equilibrium is stable or
unstable. Namely, to each equilibrium e of (1) there corresponds an associated fixed point ue of k(u), and
e is linearly stable if and only if k′(ue) < 1; see Figure 1a. These results were generalized in the paper [14]
to allow for a multidimensional input vector u.

The contribution of the current paper is to provide a generalization of these results to the case where a
steady state response X(u) necessarily exists. Thus, we consider an arbitrary monotone dynamical system
(1), under mild regularity and boundedness conditions often satisfied for gene regulatory networks, and we
provide an analysis of the number of its equilibria and their stability properties in terms of a graph such
as that given in Figure 1b. The steady state response ‘functions’ X(u) and k(u) are now interpreted as
bifurcation graphs on the parameter u. The multivalued function k(u) is assumed to be locally differentiable
around certain points, and in fact it can be regarded informally as a collection of branches, which may be
stable or unstable depending on the local stability of the system (Figure 1b).

Our main result is Theorem 4.6, which essentially states that the linearly stable equilibria e of (1)
correspond to the fixed points ue of the multivalued function k(u), such that both k′(ue) < 1 and (ue, ue)
lies on a stable branch of k(u). Using generic convergence results, almost every solution of the system (1)
converges towards one of its stable equilibria — therefore the type of information obtained by this argument
constitutes a general analysis of the dynamical behavior of this system. Thus our main result, Theorem 4.6,
is in effect a statement about linear control systems, and its application to nonlinear monotone systems is
straightforward in the context of the current literature.

A recent result by Malisoff and de Leenheer [29] has been previously published which extends the negative
feedback results of [1] to multivalued functions, in a similar way as we extend the positive feedback results
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of the paper [2].

k(u) k(u)
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Figure 1. a) The steady state response curve k(u) and its fixed points. It follows from this graph that there are two stable equilibria
and one unstable equilibrium of (1). b) In this case the steady state response function is not well defined, and it is interpreted instead
as a bifurcation curve. The dotted line represents an unstable branch of this curve (see Section 3). For the corresponding monotone

system there are, once again, two stable equilibria and one unstable equilibrium (Theorem 4.6).

Robustness and uncertainty

A most important feature of our approach is that, as illustrated above, one may deduce the number and
location of equilibria, and their stability, from the analysis of the fixed points (and slopes) of multivalued
bifurcation graphs. This means that the system’s asymptotic behavior is preserved under changes of para-
meters and even the general form of the vector field, as long as the number of fixed points is unchanged
and their slopes remain within appropriate bounds.

This robustness of conclusions makes the combination of graphical and theoretical approach, as used here
and in [1,2], a very useful tool for sensitivity analysis, akin to the use of graphical tools in classical control
theory. It also allows one to address the “data-rich/data-poor” dichotomy [39, 40] pervasive in systems
biology: while, on one hand, fairly good qualitative network, graph-theoretic, knowledge is frequently
available for signaling, metabolic, and gene regulatory networks, on the other hand, little of this knowledge
is quantitative at the level of precision demanded by most mathematical tools of analysis. It is often hard
to experimentally validate the form of the nonlinearities used in reaction terms, and even when such
forms are known, to accurately estimate coefficients (parameters). Therefore, analysis techniques that use
relatively small amounts of quantitative information are especially useful in that context. This is especially
so when the quantitative information is the “response” to possible constant inputs. In biological problems, a
constant input may represent, for example, the concentration of a certain extracellular ligand in a signaling
system, or the level of expression of a constitutively expressed gene. Steady-state responses (dose response
curves, activity plots, etc.) are very frequently available from experimental data, especially in molecular
biology and pharmacology, for instance in the modeling of receptor-ligand interactions.

Outline of the Rest of the Paper

In Section 2, we provide definitions of various general concepts involved. In Section 3, we formally define the
functions referred to as monotone bifurcation graphs, and we introduce their relevance to the stability of a
given dynamical system. Section 4 contains the proof of the main result, Theorem 4.6. Section 5 considers
a particular case of this framework, in which a one-dimensional reduction of the system is possible. In
Section 6, these results are applied to a nine-dimensional cooperative gene network. Section 7 addresses
the generalization of Theorem 4.6 to reaction diffusion and time delay systems. The Appendix contains a
technical result on cascades of non-monotone systems.
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2. Definitions

Let K ⊆ Rn be a cone, by which is meant a set that is nonempty, convex, closed under multiplication
by positive scalars, and pointed (i.e. K ∩ (−K) = {0}). It will also be assumed that K is closed and has
nonempty interior. The cone K induces the partial order given by: x ≤ y iff y − x ∈ K, and the stronger
order x � y iff y − x ∈ intK. It will also be said that x < y if x ≤ y and x 6= y. A commonly used order
is that induced by a tuple s = (s1, . . . sn), where si = ±1 for every i, and defined by x ≤s y iff sixi ≤ siyi

for every i. These cones are referred to as orthant cones. The cooperative cone is defined by the tuple
s = (1, . . . , 1).

An autonomous system ẋ = f(x) is said to be monotone with respect to ≤ if x ≤ y implies x(t) ≤ y(t)
for all t, where x(t), y(t) are the solutions of the system with initial conditions x, y, respectively. It is
strongly monotone if x < y implies x(t) � y(t) for all t > 0.

A matrix A ∈ Mn×n is said to be monotone with respect to the order ≤ if x ≥ 0 implies Ax ≥ 0. We
also say A ≥ 0 as a shorthand notation. The matrix A is strongly monotone if x > 0 implies Ax � 0.
The matrix A is (strongly) quasimonotone with respect to ≤ if the linear system ẋ = Ax is (strongly)
monotone with respect to this order. The leading eigenvalue of A, or s(A), is the eigenvalue with the
largest real part among all eigenvalues of A. If A is quasimonotone, then the Perron-Frobenius theorem
guarantees that s(A) is a real number and that there exists an eigenvector v > 0 of A associated to s(A).
For a full statement of this theorem for quasimonotone matrices, see [13], and for the classic statements
for monotone systems, see for instance [36].

One can form the digraph associated to ẋ = f(x) by writing a positive (negative) arc from xi to xj if
∂fi/∂xj ≥ 0 (∂fi/∂xj ≤ 0), with the strong inequality holding at least at some state x. We write no arc
if ∂fi/∂xj ≡ 0. Note that not every system allows for the construction of such a digraph — if it does, we
call it a sign-definite system. A system is monotone with respect to some orthant cone if and only if the
digraph of the system has no closed chains with negative parity. Thus for instance, the system associated
with the digraph in Figure 2 is monotone, and it would still be monotone if both arcs p1 → r2, p2 → r3
had a negative sign. In the case of orthant cones, a sufficient condition for strong monotonicity is that
the Jacobian be an irreducible matrix, for all x. This happens, in particular, provided that the partial
derivatives ∂fi/∂xj(x), for all i 6= j all have a constant sign (everywhere zero, everywhere positive, or
everywhere negative) and the adjacency graph is strongly connected.

We denote by E the set of equilibria of (1), and by Es ⊆ E the set of equilibria whose linearization has
all eigenvalues on the closed left half of the complex plane.

3. Monotone Decompositions

Consider a given C1 dynamical system ẋ = g(x) over the state space X ⊆ Rn. A monotone decomposition
of the system is a tuple (f, h), where the C1 function f defines a parametrized dynamical system on the
state space X,

ẋ = f(x, u), (3)

u is a parameter which may take values on U ⊆ Rm, and there exist cones KX ⊆ Rn, KU ⊆ Rm generating
orders ≤X ,≤U on Rn and Rm, such that

(i) g(x) = f(x, h(x))
(ii) ẋ = f(x, u) is monotone, for every fixed u (D)
(iii) u1 ≤ u2 implies f(x, u1) ≤ f(x, u2), for every fixed x
(iv) h : X → U is a C1 function, such that x1 ≤ x2 implies h(x1) ≤ h(x2).

The last three conditions are defined with respect to the orders ≤X ,≤U .
As stated in Sontag and Angeli [1]:
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Lemma 3.1 If ẋ = g(x) allows for a monotone decomposition, then it is monotone with respect to KX .

We will without loss of generality refer to the original system as

ẋ = f(x, h(x)). (4)

3.1. Bifurcation Graphs

We define now the bifurcation graphs associated with a decomposition (3) (under the further assumptions
1.– 4.). They constitute a portrait of the equilibria of this parametrized system for every given value of u,
reminiscent of a bifurcation analysis (see for instance the bifurcation diagrams in Strogatz [41], Chapter 3).
For each u ∈ U , let:

k(u) = {h(x) | f(x, u) = 0},

and define the function ks so that it captures the ‘stable’ points of the graph,

ks(u) = {h(x) | f(x, u) = 0, s(∂xf(x, u)) ≤ 0}

Note that k and ks are set-valued functions, k, ks : U → P(U). The function k generalizes the steady
state response function h(X(u)) described in the introduction. A fixed point of k is a value y such that
y ∈ k(y), i.e. f(x, y) = 0 and y = h(x) for some x (similarly for ks). The bifurcation graphs of the system
are the graphs of the functions k and ks in U × U , seen as relations.

3.2. Linearization of the System

Given an equilibrium e of (4), we linearize the decomposition (3) around this point to create the system

ẋ = Ax+Bu, (5)

where A = ∂xf(e, h(e)), B = ∂uf(e, h(e)), and we also introduce the matrix C = h′(e). It follows from the
chain rule that ẋ = (A + BC)x is the linearization of (4) around e. To highlight the dependence of the
matrices A,B,C on e, they will be denoted as Ae, Be, Ce when necessary. It can be verified that this system
is a monotone decomposition of ẋ = (A + BC)x in the sense above. In particular, A is a quasimonotone
matrix, and B ≥ 0, C ≥ 0; see Theorem 6 of [2] for details.

3.3. Fixed points of k and Equilibria

A key component in the argument that follows is the next lemma. We will say that the system has property
(H) if:

For every x1, x2 ∈ E, x1 6= x2, it holds that h(x1) 6= h(x2). (H)

The following simple remark will be used often and is stated here as a lemma.

Lemma 3.2 Consider a monotone decomposition (3). Then the function x→ h(x) is a surjective correspon-
dence between equilibria of (4) and fixed points of k. If condition (H) is satisfied, then this is a bijective
correspondence.

Proof. If e is such that f(e, h(e)) = 0, and letting v = h(e) then v ∈ k(v) by definition of k. It is also clear
that this correspondence must be surjective. Condition (H) says that the map x → h(x) is injective on
equilibria; thus the result holds.
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We close this section with an analysis of the Jacobian of k around equilibria. Given a point (a, b) such
that b ∈ k(a), we say that k is single valued around (a, b) if there exist open neighborhoods S, T around
a, b respectively, such that graph(k) ∩ (S × T ) is the graph of a single valued function. From now on, we
will always assume that that the bifurcation graph k is single valued around its fixed points (y, y).

Lemma 3.3 Let e be an equilibrium of (4) such that detA 6= 0, and let k be single valued and differentiable
in a neighborhood of (v, v), v := h(e). Then k′(v) = −CA−1B at this point.

Proof. Define v := h(e). Since detA 6= 0, the implicit function theorem yields a function σ : S → X
defined on an open neighborhood S of v, such that σ(v) = e and f(σ(u), u) = 0 for all u ∈ S. The function
u→ h(σ(u)) can be thought of as a branch of k that intersects (v, v). Let A,B,C be as above. It follows
by the chain rule that Aσ′(v) +B = 0, hence σ′(v) = −A−1B.

The assumption that k is single valued around (v, v) allows us to conclude k(u) = h(σ(u)) in a neigh-
borhood of this point. Hence locally k′(v) = h′(e)σ′(v) = −CA−1B.

In the case m = 1, note that k is locally a scalar function, and −CA−1B is a real number.
In the following section we study the relationship between −CA−1B and A + BC in this context, in

order to draw conclusions about the stability of the equilibria of the original system (4) by looking at the
functions k and ks.

4. Stability of Equilibria

We begin by stating several results which are standard, at least in the cooperative case, and we provide
two short proofs for the sake of clarity. Consider matrices A ∈ Mn×n, B ∈ Mn×m, C ∈ Mm×n, where
Mk×l is the space of all matrices with k rows and l columns.

Lemma 4.1 Assume that A is nonsingular. Then A + BC is nonsingular if and only if CA−1B + I is
nonsingular.

Proof. Recall that for P ∈ Mn×m and Q ∈ Mm×n arbitrary, it holds det(I + PQ) = det(I + QP ). Then
det(A+BC) = det(A) det(I +A−1BC) = det(A) det(I + CA−1B), and the conclusion follows.

For the following result see also [2], Lemma 6.6, and the book by Bellman [6].

Lemma 4.2 Let A be a quasimonotone, Hurwitz matrix. Then −A−1 ≥ 0.

Proof. Consider x0 ≥ 0, and let x(t) be the solution of the dynamical system ẋ = Ax, such that x(0) = x0.
By quasimonotonicity it holds x(t) ≥ 0, for every t ≥ 0. The result follows from the equation

−x0 =
∫ ∞

0
x′(t) dt = A

∫ ∞

0
x(t) dt.

The following lemma will also be used below. For an excellent resource on this general subject for the
cooperative case, we recommend the book by Berman and Plemmons [7].

Lemma 4.3 Let A be strongly quasimonotone with respect to K, and let B ≥ 0 with respect to K, B 6= 0.
Then s(A+B) > s(A).

Proof. This follows e.g. by Theorem 1.1 of Thieme [42].

The following proposition is essentially a reference to Theorem 2 in [14], in this more general context.
Recall that a matrix is called Hurwitz if all its eigenvalues have strictly negative real part.

Proposition 4.4 Let B ≥ 0, C ≥ 0, and A quasimonotone. Then A + BC is Hurwitz if and only if A is
Hurwitz and −CA−1B − I is Hurwitz.

Proof. Let A + BC be Hurwitz, so that A is Hurwitz as well since s(A) ≤ S(A + BC) — this inequality
is a standard result for the cooperative cone, and it follows e.g. from Theorem 1.1 of [42] in the abstract
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cone case. Then −CA−1B − I is nonsingular by Lemma 4.1, and therefore Hurwitz by Theorem 2 of [14].
Conversely, let A and −CA−1B − I be Hurwitz. Then in particular −CA−1B − I is nonsingular. By
Theorem 2 of [14] once again, A+BC is Hurwitz.

See Section 2 of [7] for more information about the stability of quasimonotone matrices of similar form,
and see also the book by Farina and Rinaldi [15].

The following proposition establishes a general relationship between the two matrices A + BC and
−CA−1B − I, eliminating the nonsingularity condition in [14].

Proposition 4.5 Let B ≥ 0, C ≥ 0, and let A be quasimonotone and Hurwitz. Then

sign s(A+BC) = sign s(−CA−1B − I).

Proof. By Lemma 4.2 it holds −A−1 ≥ 0, and therefore −CA−1B − I is a quasimonotone matrix. Thus
s(−CA−1B − I) is a well defined real number.

Given that A is Hurwitz, it follows by Proposition 4.4 that s(A+BC) < 0 if and only if s(−CA−1B−I) <
0. We will show that it also holds that

s(A+BC) ≤ 0 ↔ s(−CA−1B − I) ≤ 0,

which immediately implies that s(A + BC) = 0 ↔ s(−CA−1B − I) = 0. Hence s(A + BC) > 0 if and
only if s(−CA−1B − I) > 0, and this will complete the proof.

Let s(A + BC) ≤ 0, and let ε > 0. Define Aε = A − εI, so that Aε + BC is Hurwitz. Applying
Proposition 4.4 with A replaced by Aε, it holds that −CA−1

ε B− I is a Hurwitz matrix. As ε tends towards
zero, A−1

ε converges to A−1, using the nonsingularity of these matrices. Therefore s(−CA−1
ε B−I) converges

towards s(−CA−1B − I), so that s(−CA−1B − I) ≤ 0.
Similarly, let s(−CA−1B− I) ≤ 0. Given ε > 0, it holds that −CA−1B− I− εI = −CA−1B− (1+ ε)I is

Hurwitz. So is therefore the matrix −C[(1 + ε)A]−1B − I. Applying Proposition 4.4 as before, we obtain
that (1 + ε)A+BC is Hurwitz, for every ε > 0. By the same continuity argument, s(A+BC) ≤ 0.

For the remainder of this section, we assume that the set X is order convex, i.e. if a ∈ X, b ∈ X, and
a ≤ c ≤ b, then c ∈ X. We assume also that the cone K has nonempty interior.

Theorem 4.6 Consider a C1 strongly monotone system with bounded orbits, which is decomposed in
the form (3) under assumptions 1.– 4. For every equilibrium e of (4), let the linearization around e be
strongly monotone, and assume s(Ae) 6= 0. Then almost every solution of the system converges towards
an equilibrium e such that s(Ae) < 0 and s(−CeA

−1
e Be) ≤ 1.

Proof. We can apply Theorem 7 of [12], which in this context states that given a C1 strongly monotone
system with bounded orbits and strongly monotone linearizations, almost every solution converges towards
an equilibrium e in Es (e is dependent on the initial condition). Now let A,B,C be Ae, Be, Ce respectively.
Given an equilibrium e of the system, if s(A) > 0 then s(A + BC) > 0 by Lemma 4.3 in the Appendix.
If s(A) < 0, then A is Hurwitz and it follows that s(A + BC) ≤ 0 if and only if s(−CA−1B − I) ≤ 0 by
Proposition 4.5. This is equivalent to s(C(−A−1)B) ≤ 1 by definition.

Several remarks concerning the above result are at hand.
Remark 0: in the case m = 1, by Lemma 3.3, the conclusion is equivalent to the almost-everywhere

convergence towards the equilibria e such that h(e) is a fixed point of ks and k′s(h(e)) ≤ 1. This geometric
interpretation is probably the most useful aspect of this theorem.

Remark 1: The assumption that the system has strongly monotone linearizations is used to conclude
that a generic solution converges towards some element of Es (as opposed to merely towards the set of
equilibria Es). The same conclusion follows from assuming that the system has countably many equilibria.

Remark 2: Another variation can be given for systems in which some equilibria satisfy s(A) = 0.
This is conceivable in applications, for instance in the event of the diagonal in the bifurcation graph
intersecting the boundary between a stable and an unstable branch. Also, one could have s(A) = 0 at the
origin, although this is unlikely in systems with linear decay terms. In either case, one can allow for such
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equilibria in the result by concluding that almost every solution converges towards an equilibrium e such
that either s(A) = 0 or s(A(e)) < 0, s(C(−A−1)B) ≤ 1. Moreover, one can rule out that s(A + BC) ≤ 0
for some of those equilibria: if it holds that BC 6= 0 and A + BC has strongly monotone linearization,
then 0 = s(A) < s(A+BC) by Lemma 4.3 in the Appendix.

Remark 3: An important variation of this result concerns the case in which the only equilibrium
without a strongly monotone linearization is zero. This case is encountered for instance in cooperative gene
regulatory network models with Hill function nonlinearities. To get around this problem in the cooperative
case (assuming one might have uncountably many equilibria), one can prove that the Improved Limit Set
Dichotomy is still satisfied for this system, by following the same argument as in the proof of Theorem 2.16
of [20], observing that the origin cannot be part of any omega limit set with more than one element by the
Limit Set Nonordering Property. Then the same proof of Theorem 7 in [12] can still be verified to hold for
this system, and the same conclusion in Theorem 4.6 above holds.

Theorem 7 of [12] is only one of several results strengthening the original argument by Hirsch [18]. It
differs from other results in that it doesn’t make assumptions on the countability of E, that it concludes
the generic convergence towards a point in Es (as opposed to E), and that it can be generalized to infinite
dimensions (which will be essential in later sections of this paper).

5. System Reduction

We now come to the subject of defining a new system which preserves some of the properties of the original
one, while being in some sense simpler to study. In the case of strongly monotone systems, the relevant
properties are the number and location of the equilibria, as well as their stability properties.

Consider the particular case in which the bifurcation function k(u) on Rm is single-valued, s(A) < 0
around each equilibrium, and condition (H) is satisfied. Then the equilibria of the system

u̇ = k(u) − u

are in bijective correspondence with those of the original system, by Lemma 3.2. Moreover, the linear
stability of the equilibria is preserved under this correspondence, by Proposition 4.5. It follows in this
sense that this m-dimensional system is a reduction of the original system — see [14] for a more detailed
discussion of this particular case.

Even for general set-valued k, a different, stronger reduction is sometimes possible, in the sense that the
reduced system is one-dimensional. We say that a set function γ is injective∗ if γ(x1)∩γ(x2) = ∅ whenever
x1 6= x2. Notice that if γ is injective∗, then the inverse γ−1 is a well defined single-valued function. If
the set function γ is single valued around a point (a, b), then its differentiability can be naturally defined
locally around that point.

Lemma 5.1 Let γ : U ⊆ R → P(R) be an injective∗ set function, which is both locally single valued and
differentiable around its fixed points. Define g(x) := x− γ−1(x). Then

(i) The function g is single-valued.
(ii) x ∈ γ(x) if and only if g(x) = 0.
(iii) Consider a fixed point x ∈ γ(x), such that γ′(x) 6= 0. Then g′(x) ≤ 0 if and only if 0 < γ′(x) ≤ 1.

Proof. The proofs of the first two statements are evident by definition. To see the third statement, note
that (γ−1)′(x) is locally well defined around (x, x) by the inverse function theorem. It holds g′(x) ≤ 0 iff
1 ≤ (γ−1)′(x), and (γ−1)′(x) = 1/γ′(x) using the chain rule and the expression γ−1(γ(z)) = z. Finally,
1 ≤ 1/γ′(x) iff 0 < γ′(x) ≤ 1.

We will see below how the injectivity of bifurcation functions for strongly monotone systems is satisfied.

Lemma 5.2 Under the assumptions of Theorem 4.6, (H), and m = 1, let it also hold that

(i) k is injective∗
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(ii) k is locally single valued and differentiable around its fixed points
(iii) k′(x) 6= 0 for any fixed point x
(iv) k′(x) < 0 for every fixed point x such that x 6∈ ks(x).

Then there is a bijective correspondence between the equilibria of the system (3) and those of

u̇ = u− k−1(u). (6)

Moreover, the local stability of the equilibria is preserved under this correspondence.

Proof. The correspondence between the equilibria of the closed loop and (6) is clear by Lemmas 3.2 and 5.1.
By Theorem 4.6 and its interpretation for one dimensional systems (Remark 0), the locally stable equilibria
are those corresponding to fixed points u of k(u) for which 0 < k′(u) (by assumption 3.) and k′(u) ≤ 1.
These are exactly those points which are linearly stable in (6), by Lemma 5.1.

6. An Autoregulatory Transcription Network

We consider as an application the following gene network, where we apply our arguments with m = 1.
Consider a cycle of N proteins p1, . . . , pN , each of which with its respective messenger RNA ri. We denote
the extranuclear concentration of the protein pi by qi. Let each protein promote the transcription of its
own mRNA, as in the model proposed in [9] in the case of nitrogen catabolism. Let also each protein pi

promote the transcription of pi+1, or that of p1 in the case of pN . The full system has the form

ṗi = Kimp,i(qi) −Kexp,i(pi) − a2ipi

q̇i = T (ri) −Kimp,i(qi) +Kexp,i(pi) − a3iqi,
ṙi = H(pi, pi−1) − a1iri,

i = 1 . . . N, (7)

where all constants involved are positive, and p0 is identified with pN throughout. See Figure 2 for an
illustration. The model in [9] lets the transcription factors w, y be inhibitory, and hence doesn’t fit the
present analysis from here on. Nevertheless note that by replacing (p1, q1, r1), (p2, q2, r2) and (p3, q3, r3)
by (y, ψ, Y ), (z, ζ, Z), (w,ω,W ) respectively, one obtains a very similar structure as in (7) for the main
downstream subsystem of that model.

The exact form of the functions H,T,K is relatively unimportant, as long as each of their partial
derivatives are positive (except possibly at the origin). For the sake of the argument, we use the following
functions, including a multivariate Hill function H(x, y):

H(x, y)=
A1x

m +A2y
n

A1xm +A2yn +B1
, T (r)=

A4r

B2 + r
, Kimp(q)=Kiq, Kexp(p)=Kep.

Note that the double use of A1 and A2 is necessary for H to be increasing with respect to x, y. It is also
a consequence of a quasi steady state analysis as in [25].

The decomposition considered uses the input variable λ:

ṗi = Kimp,i(qi) −Kexp,i(pi) − a2ipi, i = 1 . . . N,
q̇i = T (ri) −Kimp,i(qi) +Kexp,i(pi) − a3iqi, i = 1 . . . N,
ṙi = H(pi, pi−1) − a1iri, i = 2 . . . N,
ṙ1 = H(p1, λ) − a1ir1,

, h(p, q, r) = pN . (8)

A routine verification shows that this decomposition satisfies the conditions 1.– 4. in the definition, using
the standard cooperative orders in Rn and Rm.

Recall that A, B, C denote the matrices which linearize the open system, in this case (8).
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Figure 2. The signed digraph associated to system (7) in the case N = 3.

Proposition 6.1 Almost every solution of (7) converges towards those equilibria e such that s(A) < 0,
s(C(−A−1)B) ≤ 1.

Suppose (H) holds. Then almost every solution of (7) converges towards the equilibria e corresponding
to fixed points h(e) of ks such that k′s(h(e)) ≤ 1.

Proof. We prove the first statement. The boundedness of the solutions of (7) follows by a straightforward
argument, using the boundedness of the Hill nonlinearities (proof: the values of each of the variables pi

converge towards an interval [0,M] for some large enough M regardless of initial condition, due to the
boundedness of the function Kimp,i and the decay rate a2ipi. Use this information to bound the values of
the variable qi. Bound the values of ri in a similar way).

Also, every equilibrium e � 0 of the system has a strongly monotone linearization: each of the nonlin-
earities of the system has positive derivative given positive arguments, therefore the digraph associated to
the linearization around e is still given by Figure 2.

Furthermore, it holds that e 6� 0 implies e = 0. For instance, if e is an equilibrium such that, qi = 0 for
some i, then necessarily ri = pi = 0. If ri = 0, then either pi = 0 or pi−1 = 0. Similarly, if pi = 0, then
qi = 0, ri = 0 and ri+1 = 0. By iterating these arguments the claim follows.

In particular it follows that every nonzero equilibrium has a strongly monotone linearization. If s(As) 6= 0
at every equilibrium e and if the linearization around e = 0 is strongly monotone (or not an equilibrium),
then the result follows from Theorem 4.6.

If the linearization around the origin is strongly monotone but s(Ae) = 0 for some equlibria e, notice
that linearizing around each such equilibrium it holds BC 6= 0 — otherwise A = A + BC and A would
also be strongly quasimonotone, a contradiction by construction. It follows s(A+BC) > 0, by Lemma 4.3.
Therefore almost no solution converges towards e (see Lemma 2.1 of [37]). The conclusion of Theorem 4.6
follows as in Remark 2.

In the case that the origin e = 0 doesn’t have a strongly monotone linearization, it holds s(Ae) < 0 at
this point, as is clear by looking at the linearization around the origin. The result follows using Remark 3,
given after the proof of Theorem 4.6.

The second statement follows directly from the first, together with Lemma 3.2 and Lemma 3.3.

See Figure 3 for a numerical example of this result. This figure shows a numerical computation of k and
ks for some specific values of the parameters. The theorem predicts that most solutions of the closed-loop
system (7) should converge to one of the states that correspond to the intersection of the green and the blue
curves (given that the slopes of the blue curves have value less than one in the graph). Note that there are
four such intersections (one at zero, one at an intermediate value, and two on the two almost-overlapping
branches), and hence there are four stable steady states. Moreover, and this is a most important feature
of our approach, this conclusion persists even if the very special parameter values used in the example are
varied across broad ranges, as long as the qualitative graphical picture (i.e. the number of blue fixed points
and their slopes) remains unchanged. This robustness of conclusions makes our combination of graphical
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and theoretical approach a very useful tool for sensitivity analysis, akin to the use of graphical tools in
classical control theory.

a) b)

u u
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0.5

1

1.5

2

2.5

3

3.5

4
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0

0.5
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2.5

3
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Figure 3. A numerical computation of k, ks for (7) in the case N = 2, using the parameters
m1 = m2 = 4; n1 = n2 = 1; Ki1 = Ki2 = 1/6; Ke1 = 1/15; Ke21/12; a11 = a12 = 1; a21 = 1/10; a22 = 1/12; a31 = a32 =

1/6; A11 = A12 = 1; A21 = A22 = 1; A41 = A42 = 10; B11 = B12 = 16; B21 = B22 = 10. a) The function k, with the unstable
branches in red. b) the function ks after removing unstable branches.

In the rest of this section, we will take a closer look at the bifurcation curve k(λ) and how to determine
its stable branches and to ensure property (H), the main results being Proposition 6.5 and Corollary 6.7.
We will also show that for N = 1, a one dimensional reduction of the system is possible.

Note that this system is a cascade of N three-dimensional subsystems with a single input each. Let us
concentrate on one of these subsystems, which we write as

ṗ = Kiq −Kep− a2p
q̇ = T (r) −Kiq +Kep− a3q
ṙ = H(p, λ) − a1r.

(9)

In order to study this ‘core’ system, we consider λ to be a fixed constant, rather than an input. To
compute the bifurcation graph of this system, note that it is itself a strongly monotone system, and that
it can be studied using the previous results by decomposing it as the closed loop of

ṗ = Kiu−Kep− a2p
q̇ = T (r) −Kiq +Kep− a3q,
ṙ = H(p, λ) − a1r.

h(p, q, r) = q, (10)

which contains the single input u.

Lemma 6.2 Let λ be a fixed constant. Then the system (9), when decomposed according to (10), satisfies
property (H).

Proof. Suppose that (p1, q1, r1), (p2, q2, r2) are two equilibria of the system (9) such that q1 = q2. From
the first equation in (9) we deduce that p1 = p2, and therefore also r1 = r2. This implies the statement.

Note that for every value of u there exists a unique equilibrium of (10). Let k̂(u) denote the concentration
of the variable q at this equilibrium. Thus k̂(u) is the bifurcation graph of the system (9) decomposed as
in (10), given a constant value of λ. One can compute

k̂(u) = c1T (c2H(c3u, λ)) + c3c4u,

where c1 = 1
Ki+a3

, c2 = 1
a1
, c3 = Ki

Ke+a2
, c4 = Ke

Ki+a3
.

Lemma 6.3 Let λ be a fixed constant. The equilibria of the system (9) are in bijective correspondence
with the fixed points of k̂(u). The exponentially stable (resp. exponentially unstable) equilibria of (9)
correspond to the fixed points k̂(u) = u such that k̂′(u) < 1 (resp. k̂′(u) > 1).
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Proof. The correspondence of the equilibria follows by Lemma 3.2. The correspondence of their stability
follows after linearizing around each equilibrium by Proposition 4.5 and Lemma 3.3.

Having studied the core system (9) for a fixed value of λ, we let now λ vary over a range of values to
compute the bifurcation graph k(λ) of the open loop (8). In the case N = 1, this can be done by setting
equal to zero the LHS of system (9), obtaining

C1p = T

(
1
a1
H(p, λ)

)
, (11)

for C1 := (Ke + a2)(Ki + a3)/Ki −Ke > 0. Then k(λ) is the set of p satisfying this equation.
For general N , k(λ) consists of the steady state values of pN in (8) given the constant value λ. Thus

while k̂(u) is single valued and typically sigmoidal, k(λ) may be multivalued and have stable and unstable
branches.

Lemma 6.4 For N = 1, the function k(λ) is injective∗.

Proof. Note that ∂û/∂λ > 0, and that therefore for every fixed u, there can be at most one λ such that
k̂λ(u) = u. The injectivity follows by definition of k(λ).

Proposition 6.5 System (8) satisfies condition (H) for general N ≥ 1.

Proof. This is a direct consequence of Lemmas 6.2 and 6.4: let (p1
i , q

1
i , r

1
i ), (p2

i , q
2
i , r

2
i ) be two different

equilibria such that p1
N = p2

N . Let j be the least index such that (p1
j , q

1
j , r

1
j ) 6= (p2

j , q
2
j , r

2
j ). We can view the

system associated to Hi as a closed loop of the form (10), and use as constant λ the value p1
i−1 = p2

i−1,
or p1

N = p2
N if i = 1. ¿From Lemma 6.2 it follows that p1

j 6= p2
i . But from Lemma 6.4 it follows that

p1
i+1 6= p2

i+1. Inductively, it must follow p1
N 6= p2

N , which is a contradiction.

Using the bifurcation graph k(λ) in the case N = 1, one can create the bifurcation graph of the open
loop (8) for general N by composing the (multivalued) graphs ki(λ) of every subsystem. This is further
detailed in the appendix, where it is proved that the stable branches of k(λ) are the compositions of the
stable branches of the ki(λ). Recall that we denote by ks(λ) the stable bifurcation graph of the system.

We now show that for N = 1 there exists a one dimensional reduction of the three dimensional system
(7).

Lemma 6.6 For N = 1, the stable (resp. unstable) branches of k(λ) are strictly increasing (resp. decreas-
ing).

Proof. If (p, q, r) is an equilibrium of (9) for a fixed λ, then q = cp for a positive constant c by the first
equation of (9). It holds in general that k̂λ(ck(λ)) = ck(λ) by definition of k̂(u), k(λ). By the chain rule
it holds

∂

∂λ
k̂λ(k(λ)) = ck′(λ)(1 − ∂

∂u
k̂λ(k(λ))).

The left hand side is positive as mentioned above. Thus if ∂
∂u k̂λ(k(λ)) > 1 (i.e. on an unstable branch of

k(λ)), it holds that k′(λ) < 0. Similarly on a stable branch.

Corollary 6.7 For N = 1, there exists a bijective correspondence between the equilibria of (7) and those
of λ̇ = λ− k−1(λ), which preserves local stability properties.

Proof. Follows from Lemma 5.2, using Proposition 6.5 and Lemmas 6.4, 6.6.

We define now an expression for the function k−1(λ), in the case N = 1. Recall that for a given λ, k(λ)
is the set of p satisfying (11). Evidently for a fixed λ, k(λ) can have several values — but given a fixed
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value of p, one can find an expression for λ by expanding and solving this equation, obtaining

λ = [C1(B2A1 +A1/a1)pm+1 −A1A4p
m +B1B2C1p]1/n[A2 − C1(B2A2 +A2/a1)p]−1/n.

This expression is none other than k−1(p).

7. Introducing Diffusion or Delay Terms

Because of the strong structure imposed by the monotoncity conditions, the stability properties of
monotone systems are preserved after the addition of delay or diffusion terms. This phenomenon is made
precise in [36], and it is used here to extend Theorem 4.6 to such cases.

In order to address statements about ‘almost every’ state in infinite-dimensional systems, we will use
the following measure-theoretic concept of ‘sparseness’ due independently to Christensen and Yorke et
al. [10,21]. A Borel measurable subset A of a Banach space B is said to be shy if there exists a compactly
supported (nonzero) Borel measure µ on B such that µ(A+ x) = 0 for every x ∈ B. In finite dimensions,
the concepts of shyness and zero Lebesgue measure coincide. Given a set W ⊆ B, we also say that a set A
is prevalent in W if W −A is shy.

For both the delay and reaction diffusion systems, denote by Φt the time evolution operator after time
t. Fix t0 > 0, and assume that t0 > r in the delay case, where r is the maximum delay in the system.
Define s as the set of equilibria e such that ρ(Φ′

r(e)) ≤ 1. It is a standard result that this definition doesn’t
depend on the specific value of t0.

We will continue to denote by Es the set of equilibria e of the finite dimensional system (3) for which
s(A+BC) ≤ 0. Once again, we assume that the set X is order convex and that the cone K has nonempty
interior.

7.1. Reaction Diffusion Systems

Let (3) be a strongly cooperative system with strongly monotone linearizations around equilibria, defined
on X0 = Rn or X0 = (R+)n. Consider the reaction diffusion system with Neumann boundary conditions

vt = D∆v + f(v, h(v)). (12)

Here D is a diagonal matrix with nonnegative entries, the domain Ω ⊆ Rp is convex with smooth boundary,
and the state space used is X = C(Ω,X0). We use the variable v instead of the usual u to prevent confusion
with the input notation (we will nevertheless use x as the space variable in this section). For details on
the existence and uniqueness of solutions for this system, see for instance Theorem 7.3.1 in Smith [36].

If the state e is an equilibrium of (3), then the constant function ê is an equilibrium of (12). But, unlike
the delay case (see below), there may be equilibria of (12) which do not correspond to equilibria of (3),
i.e. which are not uniform in space. A theorem by Kishimoto and Weinberger [26] guarantees, for strongly
cooperative reaction diffusion systems on a convex domain, that a spatially nonuniform equilibrium must
be linearly unstable. This is a key ingredient in the following result, which uses the notation following
equation (5).

Theorem 7.1 Let (3) be a strongly cooperative system with bounded solutions, and such that every equi-
librium e has a strongly monotone linearization, and s(A(e)) 6= 0. Then almost every solution of the
reaction diffusion system (12) converges towards the spatially uniform equilibria ê such that s(A(e)) < 0
and s(C(−A−1)B) ≤ 1.

Proof. By Corollary 7.3.2 and Theorem 7.4.1 of [36], system (12) is well defined on X and strongly
monotone. Consider the following independent statements.

First, by the proof of Theorem 9 in [12], for almost every initial condition v(x) ∈ X (in the sense of
prevalence) there exists v̄(x) ∈s such that Φt(v) → v̄ as t→ ∞ (under the supremum norm).
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Second, by the main result in [26], every element of s is of the form ê, for some equilibrium e of (3).
Moreover, by Remark 7.6.1 of Smith [36], an equilibrium ê of (12) is in s if and only if e is in Es. Therefore
the function e→ ê is a bijection between s and Es.

Third, the argument in the proof of Theorem 4.6 applies for system (3) to conclude that Es consists of
the equilibria e such that s(A(e)) < 0 and s(C(−A−1)B) ≤ 1.

The conclusion follows by combining the results of the last three paragraphs.

Given the modularity of this proof, any of the remarks after the proof of Theorem 4.6, which be used
to provide a slight generalization of that theorem, can in turn be used to prove an analog generalization
of the result above. For instance in the case m = 1, the equilibria of (12) correspond to the fixed points
u0 of ks(u) such that k′s(u0) ≤ 1, etc.

Example. Consider the gene network from our previous application with the addition of diffusion terms
for each variable. The system has the form

ṗi = dpi∆pi +Kimp,i(qi) −Kexp,i(pi) − a2ipi

q̇i = dqi∆qi + T (ri) −Kimp,i(qi) +Kexp,i(pi) − a3iqi
ṙi = dri∆ri +H(pi, pi−1) − a1iri,

(13)

where all diffusion coefficients are nonnegative. A realistic biological example might assume dqi > 0 for
some i, all other diffusion coefficients having value zero. Assume for simplicity that the derivatives at zero of
all nonlinearities involved are larger than zero, so that the linearization around the origin of (7) is strongly
monotone. Also assume for simplicity that s(A(e)) 6= 0 for every equilibrium e in (7). Then Theorem 7.1 can
be used to describe the dynamics of the reaction diffusion system. Using the correspondence ê→ e→ h(e)
between equilibria of the reaction diffusion system and fixed points of the bifurcation graph k, we further
have:

Corollary 7.2 Almost every solution of the reaction diffusion system (13) converges towards the equilibria
ê corresponding to fixed points h(e) of ks, such that k′s(h(e)) ≤ 1.

7.2. Delay Systems

Consider a C1 delay system

ẋ = F (xt) (14)

defined in the set X of states φ ∈ C([−r, 0],X0), where X0 = Rn or X0 = (R+)n for simplicity. The usual
definitions of monotonicity can be made using the cooperative cone K = {φ ∈ X |φ(s) ∈ (R+)n for all s}.
Practical conditions for characterizing strong monotonicity with respect to K are the assumptions (I), (R),
(M) described in detail in Chapter 5 of [36].

Let x̂ ∈ X denote the constant function with value x, for x ∈ X0. One can associate to the delay system
the finite dimensional system ẋ = F̂ (x), where F̂ (x) = F (x̂). This system is strongly cooperative whenever
(14) is (in the sense of Theorem 5.3.4 of Smith [36]), and it will be written in the form (3) to apply the
results from the previous sections. It is a basic result from the theory of delay systems that e → ê is a
bijective correspondence between equilibria of (3) and those of (14).

The key result is Corollary 5.2 of [36], which ensures that an equilibrium ê of (14) is exponentially
unstable if and only if the corresponding equilibrium e of its undelayed system (3) is exponentially unstable.

Theorem 7.3 Let (14) be a C1 strongly cooperative system with bounded solutions and strongly monotone
linearizations around equilibria, and for every equilibrium ê let s(A(e)) 6= 0 in (3). Then almost every
solution of the delay system converges towards an equilibrium ê such that s(A(e)) < 0 and s(C(−A−1)B) ≤
1.
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Proof. Consider the following independent statements below.
First, it can be verified that the delay system satisfies the hypotheses of Theorem 7 in [12]. Therefore

for almost every initial condition φ (in the sense of prevalence) there exists e ∈s such that Φt(φ) → e as
t→ ∞ (using the supremum norm).

Second, by Corollary 5.2 of Smith [36], the function e→ ê is a bijection between Es and s.
Third, given the hypotheses on (14), it follows that the undelayed system (3) is also strongly monotone

with strongly monotone linearizations around equilibria. We use the argument in Theorem 4.6 to conclude
that Es consists of the equilibria e such that s(A(e)) < 0 and s(C(−A−1)B) ≤ 1.

The conclusion follows by combining the results of the last three paragraphs.

Example. Consider the gene network from our previous application with the addition of transcriptional
and translational delays for each protein, which we denote by σi and τi respectively. The system has the
form

ṗi = Kimp,i(qi) −Kexp,i(pi) − a2ipi

q̇i = T (ri(t− τi)) −Kimp,i(qi) +Kexp,i(pi) − a3iqi
ṙi = H(pi(t− σi), pi−1(t− σi)) − a1iri,

i = 1 . . . N, (15)

Assume for simplicity that the derivatives at zero of all nonlinearities involved are larger than zero,
so that the linearization of (7) around the origin is strongly monotone. Also assume for simplicity that
s(A(e)) 6= 0 for every equilibrium e in (7). Then we can use Theorem 7.3 to characterize the dynamics
of the delay system. Using the correspondence ê → e → h(e) between equilibria of the delay system and
fixed points of the bifurcation graph k, we further have:

Corollary 7.4 Almost every solution of the delay system (15) converges towards the equilibria ê corre-
sponding to fixed points h(e) of ks such that k′s(h(e)) ≤ 1.
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Appendix: Stable Equilibrium Descriptors

Lemma 7.5 Consider a (not necessarily monotone) cascade

żi = gi(z1, . . . , zi), i = 1 . . . N. (16)

Then a tuple of vectors (z̄1, . . . , z̄N ) is an exponentially stable equilibrium if and only if for every i, z̄i is
an exponentially stable equilibrium of

żi = gi(z̄1, . . . , z̄i−1, zi). (17)

Proof. The proof is obvious from the fact that the characteristic polynomial of the cascade is equal to∏n
i=1 charpoly (∂gi/∂zi).
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Consider now a series of N single input, single output systems

żi = fi(zi, ui), i = 1 . . . N,
yi = hi(zi) ∈ R, i = 1 . . . N, (18)

which are coupled as a cascade by ui = yi−1, i = 2 . . . N . Define as before the set functions Si(u) :=
{hi(z̄i) | z̄i is an exponentially stable equilibrium of żi = fi(zi, u)}.

Given functions f : A → P(B), g : B → P(C), we compose in the natural way to form the function
g ◦ f : A→ P(C):

(g ◦ f)(a) = {c ∈ C | there exists b ∈ B such that b ∈ f(a), c ∈ g(b)}.

Lemma 7.6 Define for the cascade above the output h(z1, . . . , zN ) := hN (zN ) and the stable output set
function S. Then S = SN ◦ . . . S1.

Proof.
Consider a fixed ū1 ∈ R. Given a vector (z̄1, . . . , z̄N ), define ȳi := hi(z̄i), i = 1 . . . N , ūi := ȳi−1,

i = 2 . . . N . Then h(z̄1, . . . , z̄N ) = ȳN ∈ S if and only if (z̄1, . . . , z̄N ) is an exponentially stable equilibrium
of the cascade. But by Lemma 7.5, this is equivalent to the exponential stability of z̄i in (17) for every i,
where

g1(z1) := f1(z1, ū1),
gi(z1, . . . , zi) := fi(zi, hi−1(zi−1)), i = 2 . . . N.

This is in turn equivalent to ȳi ∈ Si(ūi), i = 1 . . . N , which is equivalent by definition of composition to
ȳN ∈ SN ◦ . . . ◦ S1(ū1).
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