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Abstract— A recent paper by Angeli and Sontag presented a
stability criterium for feedback loops involving single input, sin-
gle output models which admit a well-defined I/O characteristic
and satisfy a monotonicity condition. This paper generalizes the
argument to arbitrary strongly monotone systems. The main
idea is to study the asymptotic behavior of a strongly monotone
system by relating it to a graph on the plane which contains
information about the equilibria of the system and their stability
properties.

I. INTRODUCTION

Consider a monotone system

ẋ = g(x) (1)

defined on a state space X ⊆ R
n (definitions below). In the

paper [2], the asymptotic behavior of such systems is studied
by decomposing them as the unity feedback closed loop of
a (SISO) controlled monotone system

ẋ = f(x, u), u = h(x). (2)

This system is assumed to have the following property:
for every u0 ∈ U , the autonomous system ẋ = f(x, u0)
with fixed control u0 is globally attractive to an equilibrium
kX(u0). The function k(u) = h(kX(u)) is then used in a
graphic test to determine the stability of (1). In the paper [8],
Enciso and Sontag generalize this approach to include the
multidimensional input case, and they show that the system
u̇ = k(u) − u has similar stability properties as (1). In the
present paper, we eliminate the global attractivity assumption
altogether by considering the ‘set characteristic’ function
KX(u) = {x ∈ X | f(x, u) = 0}. We further generalize
the results in such a way that no nondegeneracy assumptions
are necessary (both of these assumptions were crucial in the
previous papers). In order to do so, we make a frequent use
of the irreducibility of the system, which means that the
digraph G associated to the system (1) is strongly connected,
and which is commonly satisfied in nontrivial examples. We
have restricted our attention here to the SISO case for reasons
of space, but a more comprehensive treatment is given in
[10], [11]. The main message of this paper is illustrated in
Figure I: since in a strongly monotone system, a generic
solution converges to an equilibrium, finding the number
of equilibria and their local stability provides an accurate
analysis of global behavior, and such information can be
read from the graph of the set characteristic.
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Fig. 1. Interpreting the stability of equilibria in (1) by using the graphs
of KX(u) and K(u) = h ◦ KX . Each equilibrium e in a) corresponds
to a point π1(e) = (h(e), e)) ∈ graph KX ∩ transp(graph h) in b), and to
a point π2(p) = (h(e), h(e) in c). The first correspondence is always
a bijection, whereas the second correspondence is a bijection provided
condition (H) is satisfied, see Section III. The point e is guaranteed to be
exponentially unstable if πi(e) lies on an exponentially unstable branch (see
Section IV for definitions), but it may be exponentially unstable even if it is
on a stable branch, such as π2(e2) in d). Sufficient and necessary conditions
for a hyperbolic point e to be exponentially stable, as will be shown in
Section IV, are that both π2(e) lies on a stable branch and K ′(π2(e)) ≤ 1.

The organization of this paper is as follows. After intro-
ducing basic definitions and stating some general results in
Section II, we describe the relevance of set characteristics
in Section III. The main results are presented in Section IV.
Section V contains a simple application to a three-variable
system, and Section VI considers a cyclic cascade of such
systems as a more elaborate example.

The proofs of all lemmas are relatively straightforward,
and they have been omitted due to space limitations; see
[10], [11] for details.

II. DEFINITIONS

Let K ⊆ R
n be a cone, by which is meant a set that is

nonempty, convex, closed under multiplication by positive
scalars, and pointed (i.e. K ∩ (−K) = {0}).

It will also be assumed that K is closed and has nonempty
interior. The cone K induces the partial order given by: x ≤
y iff y − x ∈ K, and the stronger order x ¿ y iff y −
x ∈ intK. It will also be said that x < y if x ≤ y and
x 6= y. A commonly used order is that induced by a tuple
s = (s1, . . . sn), where si = ±1 for every i, and defined by



x ≤s y iff sixi ≤ siyi for every i. These cones are referred
to as orthant cones.

An autonomous system ẋ = f(x) is said to be monotone
with respect to ≤ if x ≤ y implies x(t) ≤ y(t) for all t,
where x(t), y(t) are the solutions of the system with initial
conditions x, y, respectively. It is strongly monotone if x < y
implies x(t) ¿ y(t) for all t > 0. A controlled system
(2) is said to be monotone (with respect to given orders
in the state and input spaces) if i) the autonomous system
ẋ = f(x, u0) is monotone, for each fixed control u0 ∈ U ,
and ii) u ≤ v → f(x, u) ≤ f(x, v) for all x ∈ X, u, v ∈ U .
The function h in this system is said to be a positive feedback
function if x ≤ y implies h(x) ≤ h(y).

A matrix A ∈ Mn×n is said to be monotone with respect to
the order ≤ if x ≥ 0 implies Ax ≥ 0. It is strongly monotone
if x > 0 implies Ax À 0. The matrix A is (strongly)
quasimonotone with respect to ≤ if the linear system ẋ = Ax
is (strongly) monotone with respect to this order. The leading
eigenvalue of A, or s(A), is the eigenvalue with the largest
real part among all eigenvalues of A. If A is quasimonotone
then the Perron-Frobenius theorem guarantees that s(A) is a
real number and that there exists an eigenvector v > 0 of
A associated to s(A). For a full treatment of this theorem
for quasimonotone matrices, see [4] (also [10]), and for the
classic statements for monotone systems, see for instance
[14].

If the partial derivatives ∂fi/∂xj have constant sign for
every i 6= j, one can form the digraph associated to
ẋ = f(x) by writing a positive (negative) arc from xi to
xj iff ∂fi/∂xj 6≡ 0 and ∂fi/∂xj ≥ 0 (∂fi/∂xj ≤ 0).
A system is monotone with respect to some orthant cone
if and only if the digraph of the system has no closed
chains with negative parity [3]. The strong monotonicity of a
system is closely related with monotonicity together with the
strong connectivity of the associated digraph. An important
result for strongly monotone systems is Hirsch’s generic
convergence theorem [13]: almost every bounded solution
of a strongly monotone system converges towards the set E
of equilibria.

III. SET CHARACTERISTIC FUNCTIONS

Consider a C1 monotone controlled system (2) defined on
the input and state spaces U ⊆ Rm, X ⊆ Rn. Assume that
X (U ) is the closure of an open set in R

n (Rm), and let
KX ⊆ R

n, KU ⊆ R
m be the cones with respect to which

the system is monotone. Assume that h is a positive feedback
function. In this case, the closed loop system

ẋ = f(x, h(x)) (3)

is easily shown to be monotone, see [2].
Consider the set function KX : U → P(X) defined by

KX(u) = {x ∈ X | f(x, u) = 0}. For each fixed u ∈ U ,
and in the particular case that (2) is strongly monotone,
Hirsch’s theorem implies that almost all bounded solutions of
ẋ = f(x, u) converge towards the set KX(u). In this way
the present setup generalizes the concept of characteristic

proposed in [1], [2], [8], [9]. The idea of generalizing
characteristic functions as set characteristics was also used
by de Leenheer and Malisoff [7] for a similar setup in the
negative feedback case. In the case that K is a single-valued
function, and if it holds that i) det fx(K(u), u) 6= 0 for every
u, and ii) for every fixed point ū of K, det(K ′(ū)− I) 6= 0,
we say that K is a strong characteristic; this definition
corresponds to that of a ‘characteristic’ in [8].

The equilibria of the closed loop system (3) are in bijective
correspondence with the intersection between graph KX and
the transpose of graph h. We state this in the following
lemma, whose proof should be self-evident.

Lemma 1: Given a controlled system (2), a state x ∈ X
is an equilibrium of (3) if and only if x ∈ KX(h(x)).
The function x → (h(x), x) is a bijective correspondence
between equilibria of (3) and points (u, x) such that x ∈
KX(u), u = h(x).

Given the function KX above, consider the set function
K : U → P(U), defined by K(u) = {h(x) |x ∈ KX(u)}.
The following lemma relates to K as Lemma 1 relates to
KX . We will say that the system has property (H) if

(H) For every x1, x2 ∈ E, x1 6= x2, it holds that
h(x1) 6= h(x2).

Lemma 2: Let condition (H) be satisfied. Then the func-
tion x → h(x) forms a bijective correspondence between the
equilibria of (3) and the points u ∈ U such that u ∈ K(u).

Note that if KX is a strong characteristic, then the
assumption of this lemma is satisfied automatically, since
h(x1) = h(x2) implies x1 = KX(h(x1)) = KX(h(x2)) =
x2.

Consider now an equilibrium point x̄ ∈ KX(h(x̄)) of (3).
Let

ẋ = Ax + Bu, y = Cx (4)

be the linearization of (2) around (ū, x̄), ū = h(x̄). Let kX :
S → X be a C1 function defined on an open neighborhood
of ū, and such that f(kX(u), u) = 0 for all u ∈ S (such a
function is guaranteed to exist if det A 6= 0, via the implicit
function theorem). Thus kX can be thought of as a ‘branch’
of KX . A branch is said to be ‘stable’ if A(u) is Hurwitz for
every u ∈ S, and ‘unstable’ if A(u) is exponentially unstable
for every u ∈ S.

From the equation above one can find the derivative
(kX)′(ū) by using the chain rule, namely (kX)′(ū) =
−A−1B. Then the C1 function k : S → U given by k(u) =
h(kX(u)) is such that k(ū) = ū and k′(ū) = −CA−1B.
In [10], [11], the stability of the closed loop system is
shown to be related with that of the (locally defined) system
u̇ = k(u) − u. Here we will only be concerned with the
linearization of that system around ū, namely Red(x̄) :=
−CA−1B − I . In Theorem 1 we will study the relationship
between this matrix and the matrix A + BC, which is the
linearization of (3) at x̄.

IV. THE MAIN RESULTS

We begin this section with several preliminary lemmas.



Lemma 3: Let A be strongly quasimonotone with respect
to K, and let B be a monotone matrix with respect to K,
B 6= 0. Then s(A + B) > s(A).

If A is only assumed to be monotone, then one can still
conclude that s(A+B) ≥ s(A) — see Lemma 24 in [10] or
Berman and Plemmons [5].

Lemma 4: Consider matrices A ∈ Mn×n, B ∈
Mn×m, C ∈ Mm×n, and assume that A is nonsingular.
Then A + BC is nonsingular if and only if CA−1B + I is
nonsingular.

The following theorem is a generalization of Theorem 2
in [8].

Theorem 1: Let (4) be a monotone controlled system, and
let A be Hurwitz. If A+BC and −CA−1B−I are strongly
quasimonotone, then sign s(A+BC) = sign s(−CA−1B−
I).

Proof: The result in Theorem 2 in [8] covers the case in
which det−CA−1B − I 6= 0. Therefore it remains only to
consider the case det−CA−1B − I = 0, or equivalently,
det A + BC = 0. Define λ := s(A + BC) and µ :=
s(−CA−1B − I), and note that in particular λ ≥ 0, µ ≥ 0,
since 0 is in the spectrum of both matrices. We show that
λ > 0 if and only if µ > 0, which will complete the result.

Suppose first that µ > 0. The key observation is that if
λ = 0, then there exists a unique vector σ À 0 (modulo
multiplication by constant) such that (A + BC)σ = 0,
by strong quasimonotonicity and the Perron-Frobenius the-
orem for quasimonotone matrices. Let τ 6= 0 be such that
−CA−1Bτ − τ = 0. Multiply by B from the left, and let
w be such that Aw = Bτ . After simplifying, it holds that
−BCw − Aw = 0, or (A + BC)w = 0. Note that Bτ 6= 0,
since otherwise 0 = −CA−1Bτ − τ = −τ . Therefore also
w 6= 0. If it were true that λ = 0, then by our observation
above, w = ασ, α 6= 0. Now, after multiplying from the left
by CA−1 and canceling, we get

(−I − CA−1B)Cσ = 0, Cu > 0,

which is a contradiction, since by the Perron-Frobenius the-
orem for q.m. matrices the only eigenvalue of −I−CA−1B
that can have positive eigenvectors is µ 6= 0. Thus λ > 0.

Conversely, let λ > 0, and assume by contradiction µ = 0.
Let σ À 0 be such that −CA−1Bσ − σ = 0. Let τ be
such that Bσ = Aτ . Note that since σ À 0, it holds
that Bσ > 0, and therefore τ 6= 0. In the same fashion
as above, we have (A + BC)τ = 0. Now, since A is
quasimonotone and Hurwitz, it holds that for any x > 0,
A−1x = −

∫
∞

0
etA x dt < 0, see for instance [8], in the

proof of Theorem 2. Therefore τ = A−1Bu < 0. The fact
that −τ > 0 is an eigenvector of the eigenvalue 0 6= λ of
A + BC violates the Perron-Frobenius theorem, by strong
quasimonotonicity.

For the next theorem we give the following definition.
Consider an equilibrium point x̄ ∈ KX(h(x̄)) of (3), and
the linearization (4) of the system around this equilibrium.
We say that x̄ is reducible if either A + BC is not strongly
quasimonotone or BC = 0. Otherwise we say that it is non-
reducible.

Theorem 2: Consider a C1 SISO system (2) which is
monotone, and whose closed loop (3) is strongly monotone.
Assume that the set of equilibria of (3) is countable. Then
almost all bounded solutions of (3) converge towards those
equilibrium points x0 ∈ E that are either reducible (if any),
or such that A(h(x0), x0) is Hurwitz and −CA−1B−1 ≤ 0.

Proof: As mentioned above, Hirsch’s theorem [12] guar-
antees that almost all states x ∈ X with bounded orbit satisfy
ω(x) ⊆ E. Since any such omega limit set is nonempty and
connected, and E is countable, it follows that w(x) is a
singleton for almost every x ∈ X with bounded orbit. That
is, almost every bounded solution converges towards some
equilibrium point x0 ∈ E. Furthermore, By Corollary 4.5
in [13] (which uses the countability of E), almost every
bounded solution converges towards an equilibrium x0 ∈ Es.

Consider an equilibrium x0 of the closed loop (3), and
the linearization (4) of the open loop system around p =
(h(x0), x0). The linearization of the closed loop around this
point has the form

ẋ = (A + BC)x. (5)

We observe first that if A(p) is exponentially unstable, then
A+BC is itself exponentially unstable by the comment after
Lemma 3.

Now, let x0 be non-reducible and such that s(A(p)) = 0.
We cannot directly apply Lemma 3, since A is not necessarily
strongly quasimonotone. But we know that A + BC is
strongly quasimonotone. Therefore there must exist a small
number ε > 0 such that A + (1 − ε)BC is strongly quasi-
monotone (proof: let Tε be the time-1 evolution operator of
this matrix. In finite dimensions, it is sufficient to prove that
T is strongly monotone for small ε. But this is equivalent to
Tε(K∩Sn) À 0, which is true for small ε by continuity). By
the comment after Lemma 3, 0 = s(A) ≤ s(A+(1−ε)BC).
Since also εBC > 0, we apply Lemma 3 to conclude that
s(A + BC) > 0. Thus this equilibrium is also exponentially
unstable. This shows how the exponential stability of A(p) is
a necessary condition for a non-reducible point p to satisfy
sign s(A + BC) ≤ 0.

Finally, let A(p) be a Hurwitz matrix and let p be non-
reducible. Since the matrix −CA−1B−I is one-dimensional,
and using the assumption that the monotonicity is with
respect to orthant cones, we conclude that signs(A+BC) ≤
0 (< 0) if and only if −CA−1B − I ≤ 0 (< 0). This
completes the result.

The assumption in this theorem that the set of equilibria is
countable is only made in order to to ensure that the generic
solution of the system converges towards an equilibrium (as
opposed to towards the set of equilibria). It can be dropped
under relatively mild regularity assumptions on the system,
such as the differentiability of the vector field and the strong
quasimonotonicity of all linearizations around equilibria (see
[14] for details). See [10], [11] for several other similar
extensions, including generalizing to multiple-input systems.



V. AN AUTOREGULATORY TRANSCRIPTION NETWORK

In a study of nitrogen catabolism, Mischaikow et al.
[6] consider an eucaryotic unicellular organism (specifically,
yeast) which produces a protein that crosses the nuclear
membrane and promotes the further production of its own
messenger RNA. Let another protein also influence the
transcription of the messenger RNA, and denote its (for
now fixed) concentration by λ. Denote by r, p and q the
concentrations of the mRNA, the intranuclear protein, and
the extranuclear protein respectively, and describe the system
by the equations

ṗ = Kiq − Kep − a2p
q̇ = T (r) − Kiq + Kep − a3q
ṙ = H(p, λ) − a1r.

(6)

Here the functions H,T are such that ∂H/∂p >
0, ∂H/∂λ > 0, T ′(r) > 0 and represent the tran-
scription and translation rate, respectively. The constants
a1, a2, a3 are dilution/degradation coefficients, and the
constants Ki, Ke represent the rates of import and export
of protein through the nuclear membrane, respectively. (The
original model in [6] uses more arbitrary increasing functions
Ki(x), Ke(x).) In order to study the stability of this model,
we write it as the closed loop of the controlled system

ṗ = Kiu − Kep − a2p
q̇ = T (r) − Kiq + Kep − a3q
ṙ = H(p, λ) − a1r.

h(p, q, r) = q, (7)

It can be easily verified that this controlled system is mono-
tone, and that for every value of u there exists a unique
equilibrium of the system with fixed control u. In particular,
the variable q converges globally to the value

q(u) = c1T (c2H(c3u, λ)) + c3c4u,

where c1 = 1
Ki+a3

, c2 = 1
a1

, c3 = Ki

Ke+a2

, c4 = Ke

Ki+a3

.
The function q(u) corresponds to the set characteristic
k(u) = K(u).
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Fig. 2. System (6) has the associated digraph a). Item b) illustrates that
of the open loop system (7), and Item c) its associated function q(u) =
K(u) = k(u).

We verify that this open loop system contains no reducible
points. First, note that the linearization of the closed loop
system at any point has the associated digraph in Figure 2 a),
since all functions involved have positive derivative. There-
fore the matrices A + BC are all strongly quasimonotone.
Second, note that the derivative of the right hand side of (7)
with respect to u is a nonzero matrix at every point, as is

also ∇h. It is easy to verify that the multiplication of these
two matrices is nonzero, and the conclusion follows.

Lemma 5: System (6) satisfies property (H).
We conclude by the lemma above that the equilibria of

the system are in bijective correspondence with the fixed
points of q(u). Furthermore, since there are no reducible
equilibria, we can apply Theorem 2, to conclude that almost
all (bounded) solutions converge towards the points corre-
sponding to fixed points ū of q(u) with q′(ū) ≤ 1.

After studying the stability of system (6) for fixed λ, we
now consider this system itself as a monotone controlled
system with control λ. The previous discussion becomes
useful to study the resulting new characteristic function
kX(λ). Letting now h(x) = p for this new system, one can
find the values pλ towards which p may converge given a
fixed value of λ. These values form the set characteristic
k(λ).

The following technical Lemma will be used in the next
section. We say that a set function f is injective∗ if y ∈
f(x1), y ∈ f(x2) implies x1 = x2. This is the same as
requiring that f(x1) ∩ f(x2) = ∅ whenever x1 6= x2.

Lemma 6: The function K(λ) is injective∗.
Most often K(λ) consists of two stable branches and one

unstable branch, which are joined together as in Figure 3 d).
In the end of the following section, we will provide a third
and final layer of complexity for this case study.

u
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u
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c) d)

λ

K(λ)

Fig. 3. The function k(u) for a) low, b) medium, and c) high values of the
constant λ. Using the main results, one can conclude which equilibria are
Hurwitz for every fixed value of lambda, and therefore draw the function
K(λ) for the (now) open loop system (6), h(p, q, r) = q.

VI. A LARGER EXAMPLE

Now we are ready for the analysis of a medium scale,
monotone dynamical system. Consider a cycle of k proteins
p1, . . . , pk, each of which with its respective messenger
RNA. Let each protein promote the transcription of its own
mRNA, as documented for example in [6] in the case of
nitrogen catabolism. Let also each protein pi promote the
transcription of pi+1, or that of p1 in the case of pk. The
full system therefore looks like



ṗi = Kimp,i(qi) − Kexp,i(pi) − a2ipi

q̇i = T (ri) − Kimp,i(qi) + Kexp,i(pi) − a3iqi

ṙi = H(p1, pi−1) − a1iri,
i = 1 . . . k,

(8)
where p0 is identified with pk throughout. (The model in [6]
lets certain inter-protein transcription factors be inhibitory,
and doesn’t fit the present analysis from here on). Let all
constant parameters of this system be positive. As to the
nonlinear functions Ti, Hi, assume that they are nonnegative,
and that

2
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q r
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r p
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p q

1 1

23

3 3 2
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Fig. 4. The digraph associated to system (8) in the case k = 3.

T (0) = 0, T ′

i (θ) > 0,Ks,i(0) = 0,K′

s,i(θ) > 0, i = 1 . . . k,
s = ‘imp’, ‘exp’, θ ≥ 0;
Hi(0, 0) = Hi(0, φ) = Hi(θ, 0) = 0, ∇Hi(θ, φ) À 0,
i = 1 . . . k, θ, φ > 0.

(9)
See Figure 4 for an illustration. In order to best visualize

the behavior of this complex system, only one input will
be introduced, and the multi-valued function K(u) will be
computed using the tools from digraph decompositions. The
open loop system considered is

ṗi = Kimp,i(qi) − Kexp,i(pi) − a2ipi, i = 1 . . . k,
q̇i = T (ri) − Kimp,i(qi) + Kexp,i(pi) − a3iqi, i = 1 . . . k,
ṙi = H(p1, pi−1) − a1iri, i = 2 . . . k,
ṙ1 = H(p1, u) − a1ir1, , h(pi, qi, ri) = pk.

(10)
Lemma 7: The only reducible equilibrium of system (10)

is the trivial equilibrium 0.
The exponential stability of the origin itself can be readily

verified by directly computing the Jacobian.
The following is an efficient way to compute the function

K(u) as well as its stable branches. The procedure is
straightforward, but for a precise setup the reader is referred
to [10]. Consider the subdigraph Hi of G generated by the
nodes ri, pi, qi, for each i = 1 . . . k. If Ki is the characteristic
function of the i-th system of the form (7), then it follows
that K = Kk ◦ . . . ◦K1 (where the composition is meant in
a natural sense).

Lemma 8: System (10) satisfies condition (H).

Theorem 3: Every nonzero equilibrium e ∈ Es in (8)
corresponds bijectively to a non-zero fixed point on a stable
branch of the real, multivalued function K(u), with slope
less or equal than 1.

Proof: Follows from the fact that every nonzero equi-
librium in Es is non-reducible, Theorem 2, Lemma 2, and
Lemma 8.

See [10] for a simple algorithm to write the stable branches
of K as a composition of the stable branches for each of the
subsystems above.

We implemented these ideas on Matlab, using the func-
tions H(x, y) = A1xm+A2yn

A1xm+A2yn+B1

, T (r) = A4

B2+r
, Kimp(q) =

Kiq, Kexp(p) = Kep.

The function H can be derived using Michaelis-Menten
kinetics (quasi steady state analysis) in the case of the gene
regulation of two proteins that form m- and n-mers before
binding to the mRNA protein (resp.) and which complement
each other in the sense that either of the two can facilitate the
transcription process without the other’s help. For simplicity,
we will assume m = 4, n = 1 throughout (albeit in the case
of cascades of two subsystems, it would be more realistic
to let m = 1, n = 4 for the second subsystem, etc). The
function T (r) is another Hill-type function with saturation,
and the functions Kimp,Kexp are assumed to be linear.
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Fig. 5. The multivalued characteristic graphs for system (6), using the
parameters sets from (11). Stable branches are solid, and unstable branches
are dotted.
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Fig. 6. In chart c), the function K(u) for system (8), k = 2, using the
systems from Figure 5 a) and b) as first and second components, respectively,
by composing the functions in these two charts. In chart d), the stable
branches are isolated, thus forming the function SH(u) = SH2

◦ SH1
.
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Fig. 7. In e) and f), the same procedure as in Figure 6 is carried out for
a system (8), k = 3, using the systems from Figure 5 a), b) and a) as first,
second and third components, respectively.

Consider two subsystems of the form (6), with parameters

First System: Ki = 1/6; Ke = 1/15; a1 = 1; a2 = 1/10;
a3 = 1/6; A1 = 1; A2 = 1; A4 = 10; B1 = 16; B2 = 10,
Second System: Ki = 1/6; Ke = 1/12; a1 = 1; a2 = 1/12;
a3 = 1/6; A1 = 1; A2 = 1; A4 = 10; B1 = 16; B2 = 10,

(11)
and coupled in the form (8), k = 2. Let the system be
opened in the form (10), and write its associated digraph
as a cascade of the subsystems H1, H2 as given above. In
Figure 5 a),b) are illustrated the functions K(λ) of the two
subsystems in the sense of Section III. Recall that the output
of those systems was h = q, and that the output of the
subsystems here should rather be p. To avoid confusion, the
constants Ki,Ke, a2 are chosen throughout so that p = q for
any equilibrium of a system (6). The characteristic function
K(u) of system (8) can therefore be seen as the composition
of these two functions, and it is depicted in Figure 6 c).
(Note that the resolution of the graph can present a problem
in the upper right corner.) The stable branches of K(u) are
the composition of those of the two subsystems – they are
illustrated as solid lines throughout the Figure, and separately
on Figure 6 d).

Every one of the intersections of the graph in Figure 6 c)
with the diagonal represents an equilibrium in system (8).
But only a few of those are stable, and they correspond to
those points in Figure 6 d) on a stable branch (and whose
slope is less or equal than one).

In Figure 7, a nine-variable system is considered as in
Figure 4. By composing the function in Figure 6 c) with
that in Figure 5 a), the associated set valued characteristic
is given in Figure 7 e), and its associated stable branches in
Figure 7 f).
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