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Abstract

Learning has typically been exclusively associated to neuronal organism. However, there is

a great variety of data for learning in single tissue cells and single-celled organisms. In this

thesis we focus on habituation, which is a non-associative form of learning and is commonly

defined as a reversible decrease in response upon repetitive stimulation. On a cellular level,

habituation has been observed in the ciliate Stentor coeruleus and in mammalian tissue

cells. The significance of habituation lies in the ability to filter out non-harmful and irrele-

vant information, thereby allowing organisms to save resources for more important cognitive

or cellular tasks. The dynamics of habituation and recovery is not solely determined by the

number of previous stimuli but additionally depends on the frequency and intensity of stimu-

lation. The aim of this thesis is to construct a biologically plausible model of habituation on

a cellular level. The main focus is to explain how the frequency and intensity of stimulation

determine the intracellular information processing and affect how fast systems habituate

and recover. Following an idea of Staddon, we show that concatenation of two incoherent

feed forward motifs (IFF) can explain the central effects of the stimulation frequency on the

dynamics of habituation. The main feature thereby is the difference in timescales of the

two concatenated motifs, which leads to a distinct pattern of memory buildup depending

on the frequency of stimulation. Furthermore, our concatenated IFF model can account for

the effects related to stimulation intensities and we propose a simplified model based on a

single IFF motif, which shows the same qualitative behavior.
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1 INTRODUCTION

1 Introduction

The ability to sense and respond to changes in the environment is one of the most crucial

features of living organisms. In certain cases, the reaction to an environmental stimulus

may not solely be determined by the stimulus itself, but additionally depend on previous

experience of the organism. This - a persistent change in response to the same stimulus

based on experience - might serve as a basic definition of learning.1

Two main types of learning are typically distinguished. Associative learning, with the most

prominent example of Pavlovian conditioning, and non-associative learning such as habitu-

ation and sensitization. This work focuses on habituation, which is commonly defined as a

reversible decrease in response upon repetitive stimulation. The significance of habituation

lies in the ability to filter out non-harmful and irrelevant information, thereby allowing or-

ganisms to save resources for more important cognitive or cellular tasks.2 Habituation has

been extensively studied in neuronal organisms, which culminated in the definition of ten

characteristic properties displayed by most, but not necessarily all, habituating organisms.

(See table 1 for a complete list compiled by Rankin et.al.2) Even though these ten hallmarks

of habituation have been crystallized from behavioral research, it is important to note that

their definition is operational and can thus be applied to any organism with the ability to

transiently respond to individual stimuli.
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Figure 1: Example trajectory of a habituating and recovering system. 13 stimuli were
applied until the system had reached its habituated level. Then the stimulus was withheld
in order for the system to recover and a single test stimulus was applied after this recovery
period.

Habituation is more than an artifact of sensory/motor fatigue or a cellular depletion mech-

anism. This is usually demonstrated by applying different types of stimuli and checking

for dishabituation or stimulus specificity (see table 1).3 One of the most startling hall-

marks revealing the subtle information processing and time sensing involved in habituation

is frequency sensitivity; the fact that habituation and recovery are faster for more frequent

stimulation. This phenomenon suggests that habituating organisms evaluate the relevance

of a stimulus not only based on the number of previous stimuli, but additionally extract

information about its environmental context. The environment is less likely to change in

between two tightly spaced stimuli and it is reasonable to assume that a non-harmful stim-
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1 INTRODUCTION

ulus can still be ignored after a short period of time. Following the same logic, the absence

of stimuli after frequent stimulation results in a quick recovery.4 Analogously, it is less fatal

to ignore weaker stimuli, which explains why habituation is faster for less intense stimuli.

This is another central hallmark referred to as intensity sensitivity.

Despite there are examples of associative5,6 and habituation-like7,8 learning in plants, learn-

ing has typically been exclusively attributed to networks of neurons in nervous systems, or

more specifically to brains.9 In these cases, learning has been shown to be accompanied by

changes in gene expression in the involved neurons.10 In the marine slug Aplysia californica,

a species which due to its low number of large neurons has served as a model organism

for the study of habituation, long-term habituation of the gill withdrawal reflex relies on

the synthesis of new proteins in the presynaptic neuron, but also involves postsynaptic pro-

cesses.9 This is in stark contrast to short-term habituation, which has been traced back

to habituation of neurotransmitter release in the sensory neuron and is therefore a purely

presynaptic process.11 This finding has been confirmed in species other than Aplysia 12,13

These molecular events suggest that the computations relevant for short-term habituation

are performed within the sensory neuron - a single cell.

The most direct evidence for learning in single cells comes from experimental studies in

unicellular organisms and mammalian tissue cells.14 Early research on classical conditioning

in the ciliates Paramecium aurelia and Paramecium caudatum dates back to the 1950s

and 1970s.15,16 Beatrice Gelber, whose work has recently been reviewed by Gershman et.

al., trained Paramecium by repetitively presenting them with a syringe coated in bacteria.

After several trials Paramecium swam towards the syringe, which served as the conditioned

stimulus, even in the absence of bacteria. Gelber’s experiments are also notable from a

historical point of view since their controversial perception demonstrates the difficulties

encountered by her and many others who followed the unorthodox path of studying learning

outside the brain.17,18 More recently, the list of organisms capable of associative learning

has been extended to include Amoeba proteus and Metamoeba leningradensis.19

The evidence for non-associative learning in single cells is equally as rich. Herbert Spencer

Jennings worked with Stentor roeseli, a trumpet shaped, sessile ciliate, which he irritated

repeatedly. As a result he was able to observe a hierarchical sequence of avoidance behav-

ior.20 After a long period of skepticism and poorly performed attempts to disprove these

findings, they have recently been successfully reproduced.21 Stentor’s avoidance behavior

is remarkable because it shows that a single type of stimulus is not limited to quantita-

tive modification of a given response, but can activate qualitatively different behavior in a

hierarchical manner.

Most relevant for us, habituation has been observed in a variety of single-celled organisms

such as the ciliate Stentor coeruleus 22,23 and the slime mold Physarum polycephalum.24

Moreover, it has also been observed in non-neuronal mammalian tissue cells, including hu-

man embryonic kidney cells,25 and in the rat adrenal pheochromocytoma cell line PC12,
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1 INTRODUCTION

where detailed studies were performed by Daniel Koshland. In these cells habituation and

recovery of neurotransmitter release has been observed for different stimuli such as ATP,

acetylcholine and high levels of potassium.26–34 A list of the investigated hallmarks can be

found in appendix A. Koshland’s studies were carefully performed and rule out the possibil-

ity of a simple depletion mechanism by correcting for the loss of internal neurotransmitter

during the experiment. Stimulus specificity between potassium and acetylcholine and disha-

bituation to phorbol esters further allow to exclude the possibility of fatigue.26,27

From the biochemical study of PC12 cells we know that habituation of neurotransmitter

release is a downstream effect of the habituation of internal calcium levels.28,32 The available

data for stimulation with ATP suggests that this might be due to the downregulation of

calcium influx.32 However, different stimuli may rely on different pathways as can be inferred

from the fact that habituation produced by potassium and acetylcholine stimulation are

independent of each other.27,30 The pathway activated by potassium stimulation has been

hypothesized to involve L-type calcium channels and protein kinase C.26 Despite these

insights, the full circuit underlying habituation in PC12 cells has not yet been worked out in

detail. Gaining theoretical understanding of the general mechanistic principles underlying

habituation could further aid the search for biochemical mechanisms.

From a conceptual perspective, habituation can be implemented by a network including a

memory species, which builds up either proportionally to the input or the response node and

has an inhibitory effect on the latter. This corresponds to an incoherent feed forward (IFF)

or a negative feedback (NF) loop, respectively (see figure 2). The memory species stores

information about previous stimulation and accounts for the decrease in response through

it’s inhibitory effect on the response node. While it is relatively easy to construct a model

for habituation and recovery, it is not trivial to account for the hallmarks of frequency and

intensity sensitivity.

stimulus I R

M

response stimulus I R

M

response

Figure 2: The incoherent feed forward IFF (left) and negative feedback NF (right) loop in
the context of habituation. Both network motifs consist of a stimulus sensing input node
(I) and a memory species (M) with inhibitory effect on the response node (R).

The IFF and NF network motifs are ubiquitous in nature35 and therefore provide plausible

building blocks for models on the cellular level. They have been shown to underlie adapta-

tion; a phenomenon in which a persistent stimulus results in an initial increase in response

followed by a subsequent decay back to the original steady state level.36,37 Since adaptation

and habituation are conceptually related (see figure ??), adapting network topologies are

a valuable source for the construction of habituating models. Detailed models of adapta-

tion have been proposed in enzymatic and gene regulatory contexts.38,39 One of the earliest
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1 INTRODUCTION

studied adapting systems is the chemotaxis of Escherichia coli, which has been shown to

rely on the NF motif with the inhibitory memory being implemented in the form of multisite

post-translational modifications.18,40
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Figure 3: Illustration of the two related phenomena of adaptation (black) and habituation
(gray). The two curves were obtained by numerical integration of the same ODE model
with fixed parameters. For habituation the stimulus was applied with a period of 15 time
units while adaptation was simulated with a persistent stimulus of the same intensity.

Two models of habituation have been proposed previously, both relying on the IFF motif.

With the aim of providing a mechanistic framework for habituation without making any

assumptions on the underlying molecular or neuronal substrates, in 2019 Bonzanni and

others formulated a generalized model, which accounts for the basic properties of stimulus

habituation and recovery, but fails to produce the less trivial hallmarks of frequency and

intensity sensitivity.41 This is in line with Staddon’s argumentation that faster habituation

and recovery for more frequent stimuli can be obtained with IFF motifs, but only if they

are concatenated so that the output of the first motif serves as the input of the second.4 By

varying the properties of the memory species of the two modules, the first one being more

rapidly decaying and ”forgetful”, less frequent stimuli can pass the first module without any

substantial memory built-up. Habituation and recovery then mainly depend on the second

module with longer lasting memory which recovers more slowly. Due to the limited scope of

tested frequencies, the data presented by Staddon has to be treated with some care. (For a

more detailed discussion see section 3.1.) However, in a second publication Staddon extended

the idea of concatenation to NF motifs and more than two modules, which yielded more

reliable results.42 Since the idea of concatenation was implemented in a recursive, discrete

time setting the question is to what extent this framework can be adopted in a cellular

context using biologically plausible functions based on mass action and Michaelis Menten

kinetics. To the best of our knowledge, no model exists addressing intensity sensitivity.

6



1 INTRODUCTION

The aim of this thesis is to provide a biologically plausible model of habituation which

accounts for the nontrivial hallmarks of frequency and intensity sensitivity. Following the

idea of Staddon,4 we show that concatenation of the IFF motif can generate the desired

behavior in a molecular setting at the level of a single cell. The ubiquity of the IFF motif

and the resulting generality of our model might facilitate the search for molecular substrates

involved in habituation in various organisms. Studying the network topologies capable of

habituation and the dependency on the frequency and intensity of stimulation has valuable

applications in synthetic biology and biomedicine in situations of repeated stimulation such

as drug treatments. Elucidating the mechanisms of learning from the perspective of single

cells does not only enhance our understanding of the remarkable signal processing capabilities

of cells, but also sheds light on the evolutionary origins of learning.
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1 INTRODUCTION

Table 1: The ten hallmarks of habituation from Rankin et.al.2 Asterisks denote that the
naming has been changed by us. The hallmarks investigated in this work are highlighted in
grey.

Number Name Description
1 Habituation Repeated application of a stimulus results in

a progressive decrease in some parameter of a
response to an asymptotic level.

2 Spontaneous recovery If the stimulus is withheld after response
decrement, the response recovers at least par-
tially over the observation time.

3 Potentiation of habituation After multiple series of stimulus repetitions
and spontaneous recoveries, the response
decrement becomes successively more rapid
and/or more pronounced.

4 Frequency sensitivity* Other things being equal, more frequent stim-
ulation results in more rapid and/or more pro-
nounced response decrement, and more rapid
spontaneous recovery (if the decrement has
reached asymptotic levels).

5 Intensity sensitivity Within a stimulus modality, the less intense
the stimulus, the more rapid and/or more pro-
nounced the behavioral response decrement.
Very intense stimuli may yield no significant
observable response decrement.

6 Subliminal accumulation* The effects of repeated stimulation may con-
tinue to accumulate even after the response
has reached an asymptotic level [...]. This ef-
fect of stimulation beyond asymptotic levels
can alter subsequent behavior, for example, by
delaying the onset of spontaneous recovery.

7 Stimulus specificity* Within the same stimulus modality, the re-
sponse decrement shows some stimulus speci-
ficity.

8 Dishabituation Presentation of a different stimulus results in
an increase of the decremented response to the
original stimulus.

9 Habituation of dishabituation Upon repeated application of the dishabitu-
ating stimulus, the amount of dishabituation
produced decreases.

10 Long-term habituation Some stimulus repetition protocols may result
in properties of the response decrement [...]
that last hours, days or weeks.
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2 Methods

The network topologies investigated in this work were implemented as ordinary differen-

tial equations (ODEs) which were built from biologically plausible mass action or Michaelis

Menten functions. The ODEs were numerically integrated using the odeint function from

the SciPy package in python 3.8.12.43 Repetitive stimulation was simulated by a square

wave input function with fixed intensity for stimulating periods and zero input for non-

stimulating periods. The resulting integration trajectories were filtered for habituating be-

havior according to the filters listed in appendix B. Integration time was allocated on the

fly and integration was stopped once the peaks did not change significantly anymore, which

allowed for an economic allocation of computational resources.

In order to analyze a given network topology, a parameter scan with randomly generated

parameter sets was performed. Since our main interest was in the hallmarks of frequency

and intensity sensitivity, each parameter set was simulated with three different frequencies

and intensities (9 combinations in total) for which habituation and recovery times were cal-

culated. A network and it’s parameter set were considered frequency sensitive if habituation

and recovery times were strictly monotonically increasing with decreasing frequencies for

at least one of the tested intensities. Analogously, intensity sensitive systems are strictly

monotonically increasing in habituation time with increasing intensities for at least one of

the tested frequencies.

For the analysis of frequency and intensity sensitivity, a reliable definition of habituation and

recovery time is needed. Recovery times were calculated by integrating the systems without

stimulation after the system has habituated. Test stimuli were independently applied at

different times and the resulting peaks were compared to the initial peak. Once the test

stimulus reached the initial peak level, the system was considered to have recovered and

the time between the habituated stimulus and the test stimulus is referred to as recovery

time. A detailed discussion of the definition of habituation time and the possible pitfalls is

presented in the next section.

The main code for the generation of the random parameters and integration of the ODEs

was developed by Ziyuan Zhao. Adjustments were made primarily for the algorithm to

calculate habituation time, the filters and the formatting of the output files.
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2 METHODS

2.1 Definition of habituation time

In order to develop an automated computational framework for the study of frequency and

intensity sensitivity it is necessary to quantitatively compare different habituation curves.

Therefore, a definition of habituation and recovery time is needed. Intuitively, we say

that a system has habituated if the response does not decrease significantly upon further

stimulation. This can be formalized by calculating the relative difference, d, of neighboring

peaks as displayed in equation (1).

di =
pi − pi+1

pi
(1)

Here, pj denotes the jth peak and dj is the relative difference between peak j and j + 1.

Habituation time is then defined as the number of applied stimuli until the relative differences

fall below a fixed threshold. By default this threshold was set to 0.01. It is worth mentioning

that habituation time is measured in number of stimuli and not in units of time.

0 100 200 300
time (a.u.)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

co
nc

en
tra

tio
n 

(a
.u

.)

0 5 10 15 20
0.00

0.05

0.10

0.15

re
la

tiv
e 

pe
ak

 d
iff

er
en

ce

ht = 20

Figure 4: Definition of habituation time. Left: Response trajectory of a habituating
system. Right: Relative differences between peaks. The red line marks the threshold of 0.01
and the black cross indicates the first peak difference below this threshold.

The definition applied in this work may not be equivalent to other explicit or implicit

definitions found in experimental literature. In the standard reference of habituation Rankin

et. al. state that more frequent or less intense stimulation result ”in more rapid and/or

more pronounced response decrement”.2 Even though they do not further specify how to

quantify how ”rapid” a response decreases, we assume that they refer to the decay rate

associated with an exponential fit to the data. An explicit example of this definition can

be found in Cheever and Koshland’s publications about habituation of neurotransmitter

release in PC12 cells.31,32 In general, this definition can be problematic for two reasons.

First, not all habituation data can be well approximated by an exponential function. In

fact, Rankin et. al. state that ”in many cases, the decrement is exponential, but it may

also be linear”.2 Second, the exponential decay rate is strongly determined by the dynamics

of the first few peaks and by how much the response decays in total while changes in later

peaks are less significant. Therefore, exponential decay rates are not informative of the

habituating behavior, which is determined by the dynamics of the later peaks.
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2 METHODS

In experimental literature, peaks are often normalized by the highest peak instead of display-

ing absolute values.29 This can give rise to another difficulty when it comes to quantification

of habituation time. Lets consider a system which for different stimulation frequencies shows

very similar habituating behavior and the same habituation time but has different maximal

peak levels. Such a system is depicted in figure 5 with a higher maximal peak level for more

frequent stimulation. Even though both stimulation frequencies result in the same habitu-

ation time, the picture changes if we consider the normalized peak values. In this case, the

peaks of the system with higher maximal peak level (upper panel in figure 5) have lower

values when normalized compared to the system with lower maximal peak level. Therefore,

also the absolute differences between neighboring normalized peaks are smaller. This can

create the impression that the peaks are closer to each other and have already habituated.

This is especially relevant for frequency sensitivity, since higher frequencies often show some

degree of sensitization for the first few stimuli and therefore have higher maximal peak lev-

els.1 The fact that experimental data is often normalized can complicate a quantitative and

reliable assessment of the hallmarks of frequency and intensity sensitivity.
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Figure 5: The upper panel shows data for a high stimulation frequency and the lower panel
shows data for less frequent stimulation. Left: Habituation trajectory. Middle: Normalized
peaks are depicted in gray and habituation time, calculated by max normalizing the peaks
and applying a threshold of 0.01, is indicated with a black dot. Right: Habituation time
was calculated with our standard definition of relative peak differences.

1The phenomenon that higher frequencies result in more sensitization was generally observed in our
simulations and also reported and discussed from a behavioral perspective in Groves and Thompson 1970.44
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Another difficulty arises when data is minmax normalized. Less frequent stimulation typ-

ically results in less pronounced (weaker) habituation.∗ Therefore, minmax normalization,

which projects the maximal value to one and the minimal value to zero, artificially increases

the distance between peaks. If habituation time is then calculated by applying a fixed

threshold after minimax normalization, this results in higher habituation times for lower

frequencies. Consequently, high habituation times are obtained for less frequent stimulation

as a result of less pronounced habituation. Frequency sensitivity of minmax normalized

peaks may therefore be solely an artifact of the level of final decrease relative to the highest

peak. An example of this effect is given in figure 6.
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Figure 6: The upper panel shows data for a high stimulation frequency and the lower panel
shows data for less frequent stimulation. Left: Habituation trajectory. Middle: Minmax
normalized peaks are depicted in gray and habituation time, calculated by minmax nor-
malizing the peaks and applying a threshold of 0.01, is indicated with a black dot. Right:
Habituation time was calculated with our standard definition of relative peak differences.

In some extreme examples frequency sensitivity has been claimed even though only a few

peaks are presented and they have clearly not yet reached their habituated level.27 Assessing

how ”rapidly” a system habituates based on our definition of habituation time using relative

peak differences is supposed to overcome the pitfalls presented here. It provides a quantita-

tive measure which is independent of the shape of the curve and the strength of habituation.

The definition used in this work is ideal for a computational treatment of habituation and

its central hallmarks. Nevertheless, we are aware that it is difficult to apply our definition

to experimental data due to fluctuations and measurement errors.

∗This is a trend which we observed for both experimental and simulated data.
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3 RESULTS

3 Results

The main goal of this project is to develop a theoretical model for habituation, explains

how the central hallmarks of frequency and intensity sensitivity can arise from cellular

networks. The evolution of these hallmarks is stunning, but not unsurprising, since they

allow organisms to predict the relevance of a stimulus in the context of its environment.

While the biological relevance of frequency and intensity sensitivity is evident, they are

more difficult to explain from a conceptual perspective. Previously published attempts to

model habituation and its central hallmarks are reviewed in the next section and are followed

by a presentation of our own ODE models.

3.1 Previously Proposed Models of Habituation

The most recent model for habituation, which was published in 2019 by Bonzanni et. al., is

based on a single IFF loop and provides a general framework for habituation and recovery

without accounting for frequency or intensity sensitivity.41 To the best of our knowledge, no

model has been published which could explain intensity sensitivity. The situation is different

for frequency sensitivity, which has been studied in a discrete-time setting by Staddon and

Higga in the 1990s. Their original model was composed of two concatenated IFF motifs so

that the output of the first motif serves as the input of the second motif. The main feature

of the model is the difference in timescales between the two motifs. Following Staddon’s

argumentation, if the first memory decays more quickly, less frequent stimuli should pass the

first motif without significant habituation. In this case, the behavior of the system would be

dominated by the second motif with its slower decaying memory, which also takes more time

to recover. The first module is therefore supposed to serve as a low-pass filter by decreasing

its output for more frequent stimulation but letting lower frequencies pass unchanged.4

In the original paper from 1993, Staddon presents data for two different stimulation fre-

quencies. From the replicated data presented in figure 7 it can be seen that more frequent

stimulation indeed results in faster habituation and recovery. We then went on to generate

data for a wider range of frequencies which were not presented in the original paper. This

additional data tells a very different story. Except for the highest stimulation frequency

(black curve in figure 7) the general trend of habituation and recovery times is reversed;

more frequent stimulation result in slower habituation and slower recovery. Frequency sen-

sitivity is therefore limited to the data presented by Staddon but does not extend to other

frequencies.

In order to understand this apparent reversal of trends, it is important to note that the

Staddon model operates with discrete time steps. The highest frequency chosen by Staddon

was one stimulus per time step. In a discrete-time setting this implies that there is no time

at which the stimulus is withheld. Even though we have to be careful with associating the

behavior of a discrete-time model to actual biological processes, this might be interpreted

as a persistent stimulus, which is not typically associated with habituation but with the
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related phenomenon of adaptation. It therefore seems best to exclude the highest stimulation

frequency and focus on frequencies which can more reliably be associated with habituation.

In this case, frequency sensitivity is not observed for the given model and parameters.
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Figure 7: Reproduction of the concatenated IFF model in Staddon 1993.4 The upper
two figures show habituation (left) and recovery (right) trajectories for the two different
stimulation frequencies, which were originally presented by Staddon. Habituation times are
calculated using the definition of relative peak differences developed by us. The bottom
figure shows habituation peaks and recovery trajectories for a wider range of stimulation
frequencies.
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In 1996 Staddon and Higga presented an updated version of their model based on the same

idea of concatenation of IFF and NF motifs.42 This time however, they concatenated up to

ten motifs in a row and included NF loops. Additionally, they introduced a new quantity,

reflex strength, which can take values below zero. This allows for more flexibility in the

model and for habituation beyond zero, but comes at the cost that it can not be interpreted

as a biological quantity. Therefore, the results obtained may not necessarily translate to a

cellular context.

Figure 8 shows replicated data for three concatenated IFF motifs. The two frequencies tested

here, which correspond to a true habituation stimulation protocol, show faster recovery for

more frequent stimulation. Despite the fact that our data only qualitatively replicates the

data presented in Staddon’s paper, the trend of frequency sensitivity could be reproduced.
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Figure 8: Reproduction of the data for three concatenated IFF motifs presented by Staddon
and Higga in 1996.42

In conclusion, the work presented and reproduced here provides some evidence that concate-

nation of different habituating units can account for the nontrivial hallmark of frequency

sensitivity. It remains to be shown whether this network topology can be translated to a

biologically plausible, continuous-time setting. In the following sections we try to investigate

this question. We further aim to expand the theoretical framework given here in order to

provide a model for both frequency and intensity sensitivity.

15



3 RESULTS

3.2 An Enzymatic Model of Habituation from Concatenated

Incoherent Feed Forward Motifs

In this section we present a deterministic ODE model for habituation. The model is generally

based on enzymatic reactions which could for example be interpreted as post-translational

modifications. However, no assumption is made on any specific molecular substrate or cell

type. The model presented here therefore provides a general framework for the study of

habituating systems and their potential underlying network architectures.

As depicted in figure 9 and equation (2) the model consists of two concatenated incoherent

feed forward (IFF) loops and is built from mass action and Michaelis Menten kinetics.

The exact implementation of the IFF motif was adapted from network architectures for

adaptation proposed by Ma et. al. by taking advantage of the analogy between adaptation

and habituation.38 Each node represents a molecular species which can be either in its

active (Xi) or inactive (X ′
i) state. The total concentration of active and inactive species

Xtot = Xi+X ′
i is assumed to be constant. Without stimulation the system is at steady state

if all molecular species are in their inactive state. Application of a stimulus, S, activates the

input species (I) which in turn activates the memory (M) and the response (R). Additionally,

the memory species enhances the degradation of the response species and therefore has an

overall inhibiting effect on the response. The second motif is a copy of the first with the

only difference that it is activated by the response of the first module rather than by the

externally applied stimulus.
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Figure 9: The concatenated incoherent feed forward (IFF) model. Active molecular species
are highlighted in lightblue. The bold arrows indicate an activating effect on the reactions
they point to.
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dI1
dt

= S ∗ kIa1(It,1 − I1)− kIi1I1

dM1

dt
= I1 ∗ kMa1(Mt,1 −M1)− kMi1

M1

M1 +KM1

dR1

dt
= I1 ∗ kRa1(Rt,1 −R1)−M1 ∗ kRi1

R1

R1 +KR1

dI2
dt

= R1 ∗ kIa2(It,2 − I2)− kIi1I2

dM2

dt
= I2 ∗ kMa2(Mt,2 −M2)− kMi1

M2

M2 +KM2

dR2

dt
= I2 ∗ kRa2(Rt,2 −R2)−M2 ∗ kRi2

R2

R2 +KR2

(2)

The system of ODEs was numerically integrated by applying a stimulus, S, which was

kept at a constant intensity for the duration of stimulation, and was set to zero otherwise.

Trajectories which were not classified as habituating were filtered out and the remaining

systems were tested for frequency and intensity sensitivity. Figure 10 shows an example of

a typical habituating response from the concatenated IFF model including the trajectories

of all active species.
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Figure 10: Trajectories of all active species of the concatenated IFF model. Habituation
and recovery times are given on the bottom right. The system was simulated with a stimu-
lation period of T = 13 and intensity I = 10 and the parameter values are listed in appendix
C.
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As expected, the concatenated IFF model shows habituation and recovery for suitable pa-

rameter sets. While the input nodes merely mimic the signal they receive and decay quickly,

the memory species build up over time and store information about previous stimulation.

Even though only the response node of the second motif was required to pass our habituation

filters, also the first response shows a decrement typical for habituation.

3.2.1 The Concatenated Incoherent Feed Forward Model Shows Frequency and

Intensity Sensitivity

Frequency and intensity sensitivity are the central hallmarks of habituation and have been

reported in unicellular organisms and mammalian tissue cells.22,25–27,32 In order to test

whether our model can reproduce these hallmarks, each habituating parameter set was

simulated with three different stimulation frequencies and intensities (nine combinations

in total). Figure 11 shows the output trajectories for a given parameter set and selected

stimulation frequencies and intensities.
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Figure 11: Response trajectories of the concatenated IFF model for different stimulation
periods and intensities. Habituation and recovery times are indicated in the right upper
corner of each plot. A full list of parameters can be found in appendix C.
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For a stimulus intensity of I = 10, more frequent stimulation results in faster habituation

and recovery. The concatenated IFF model therefore accounts for frequency sensitivity.

Consequently, Staddon’s discrete-time model can be adapted in a more realistic cellular

context and account for frequency sensitivity. Furthermore, the concatenated IFF model

additionally shows intensity sensitivity, which has not been studied by Staddon.

In addition to the effect of stimulus intensities on habituation time, we can also investigate

the recovery dynamics. For the given parameter set, lower stimulus intensities also resulted

in faster recovery. This trend has been observed for all the parameter sets which showed

both frequency and intensity sensitivity. (Data not shown.) If the requirement for frequency

sensitivity was lifted, only 101 out of 288 intensity sensitive parameter sets showed the same

trend of faster habituation and recovery for lower stimuli. The dependence of recovery

dynamics on stimulus intensities has not been investigated in single cells nor has it been

reported in the standard reference of habituation.

3.2.2 Intermediate Stimulation Frequencies and Intensities

For reasons of computational feasibility it was necessary to restrict the number of tested

frequencies and intensities in the parameter scans to three each. However, this does not

guarantee that the trend of frequency and intensity sensitivity is maintained for intermediate

values of T and I. To get a more complete picture the system presented in figure 11 was

additionally simulated with intermediate frequencies and intensities.

As can be seen from table 2, habituation times are monotonically increasing for increasing

stimulation periods within a range of T = 13 to T = 25. The trend of frequency sensitivity

is therefore maintained for intermediate stimulation periods.

Table 2: Habituation times, ht, for different stimulation periods, T , for the concatenated
IFF model. The stimulation intensity was set to I = 10 and all other parameters are listed
in appendix C.

T 13 14 15 16 17 18 19 20 21 22 23 24 25
ht 17 17 18 18 19 21 22 24 25 25 26 26 27

Similarly, habituation time was calculated for intermediate stimulus intensities and the same

trend of intensity sensitivity was observed. This holds for all tested stimulation periods as

can be seen in table 3. While in principle the intensity of stimulation could take on arbi-

trary rational values, for convenience the analysis here is limited to even integers. Since

monotonicity in habituation time was observed for all intensities and all tested stimula-

tion periods, outliers may be unlikely. However, more randomized data would allow us to

construct a more complete picture.
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Table 3: Habituation times, ht, for different stimulation intensities, I, for the concatenated
IFF model. The stimulation period was set to values of T = 13, 19, 25 and all other param-
eters are listed in appendix C.

I 10 12 14 16 18 20 22 24 26 28 30
ht (T = 13) 17 18 21 27 32 36 39 42 44 45 46
ht (T = 19) 22 26 30 32 34 36 38 39 40 40 41
ht (T = 21) 27 29 30 32 33 34 35 35 36 37 37

In conclusion, habituation times were monotonically increasing for increasing stimulus in-

tensities and decreasing stimulation frequencies. Frequency and Intensity sensitivity, which

were originally tested for only three selected values of T and I, are therefore preserved for

intermediate stimulation parameters.

3.2.3 How Does the Threshold for Habituation Time Effect the Main Habitu-

ation Hallmarks?

By definition a system has habituated if the peaks do not decrease significantly upon further

stimulation. In order to computationally assess this time point it was necessary to set a fixed

threshold for relative peak differences. By default this threshold was set to 0.01. In order

to test whether the hallmarks of frequency and intensity sensitivity are robust with respect

to the habituation threshold, habituation times were recalculated with different threshold

values.
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Figure 12: Relative peak differences with a fixed period of T = 25 (left) and fixed intensity
I = 30 (right). The dotted red line indicates the original threshold of 0.01.

As can be seen from the data in table 4 intensity sensitivity is preserved for all tested

thresholds. This is opposed to frequency sensitivity which was not observed for thresholds

lower than 0.005. (See table 2.) From figure 12 it can be seen that the peaks decrease

more quickly for the highest stimulation period of T = 30. This results in an intersection

of peak differences for the different stimulation periods. Most likely this is due to the fact

that memory levels did not reach a stable level within the simulated time span. Instead

they keep increasing, which leads to continuing down-regulation of the response following

uncontrollable dynamics. For future research it might therefore be advisable to include an
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additional constraint to the parameter scans, requiring that the memory must reach a stable

level.

Table 4: Habituation times calculated with different thresholds for a fixed stimulus period
of T = 25. All parameters are listed in appendix C.

threshold 0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002
ht (I = 10) 27 29 32 35 38 42 48 55 65
ht (I = 20) 34 36 39 42 46 50 56 63 74
ht (I = 30) 37 39 42 45 49 54 59 67 78

Table 5: Habituation times calculated with different thresholds for a fixed stimulus intensity
of I = 13. All parameters are listed in appendix C.

threshold 0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002
ht (T = 13) 17 18 19 20 22 25 32 44 62
ht (T = 19) 22 25 28 32 37 42 49 58 71
ht (T = 25) 27 29 32 35 38 42 48 54 65

3.2.4 Sensitivity Analysis

In nature, parameters such as catalytic rate constants and Michaelis-Menten constants are

often subject to fluctuations due to changes in temperature, intracellular pH, or confor-

mational changes and mutations of the corresponding enzymes. Maintaining unrestricted

functionality under different conditions requires that the general behavior of cells must be

unaffected by these parameter fluctuations. We performed a sensitivity analysis in order

to test how much the selected parameters of the concatenated IFF model can be changed

without annihilating frequency and intensity sensitivity. Each parameter was individually

multiplied by a perturbation factor and the new system was tested for frequency and in-

tensity sensitivity. The maximal perturbations which did not affect these hallmarks are

displayed in figure 13 on a log10 scale.

The total concentration and the activation rate of the response species of motif 2 seem to

be largely insensitive to changes. They can be modulated by as much as 10 or 0.1 times

the original value and therefore span two orders of magnitude without affecting the general

trend of frequency and intensity sensitivity. On the other hand, the parameters associated

with the inactivation of memory species M1 are most sensitive to perturbations.
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Figure 13: Sensitivity analysis. Maximal perturbations which still show frequency and
intensity sensitivity are plotted on a log10 scale. Test periods are T = 13, 19, 25 and
intensities are I = 10, 20, 30 and the original parameters are listed in appendix C.

3.2.5 The Recovery Dynamics Is Determined by Memory Levels

In his attempt to construct a rate sensitive model, Staddon proposed that the memories of

the concatenated habituating motifs must operate on different time scales. If the memory of

the first motif is ”forgetful” and decays quickly enough, less frequent stimuli could pass the

first motif without substantial response decrement. The stimulus would be passed on and

recovery then mainly depended on the second module with longer lasting memory which

recovers more slowly. Conversely, for high stimulation frequencies there is more memory

buildup in the first module and less signal is passed on to the second motif. Therefore,

Staddon suggested that in this case recovery would be mainly dependent on the second

motif.4

In the concatenated IFF model presented here the rate of memory degradation of the first

and second motif are 0.23 and 0.003, respectively. Therefore, the first decay rate of the

first memory is indeed approximately one order of magnitude higher. The fact that the

parameters associated with memory degradation are most sensitive to perturbations (as

discussed in section 3.2.4) may further underpin the relevance of different memory life-spans.
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However, the decay trajectories of both memory species reveal a slightly different picture.

Due to the fact that the decay rate of the first memory is much faster, it is not surprising that

the first memory reaches its initial level of zero more quickly. This clear difference in decay

time between the two motifs is independent of the stimulation frequency. It seems therefore

more likely that the recovery is always determined by the second memory, regardless of

stimulation frequencies.
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Figure 14: Decay of the two memory species from habituated levels for different stimulation
frequencies. The stimulus intensity was set to I = 10 and the parameters are listed in
appendix C.

Figure 15 shows the behavior of the memory species for different stimulation frequencies. For

more frequent stimulation the first memory increases to higher levels than for less frequent

stimulation. As a result, the response decrease is more pronounced for higher frequencies

as displayed in the upper right panel. Consequently the second habituating motif receives

less input which leads to a lower memory buildup. Since it is the memory of the second

motif which determines the recovery, higher stimulation frequencies result in faster recovery.

Frequency sensitivity is therefore the result of an inversion of memory levels.
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Figure 15: Trajectories of the concatenated IFF model for a fixed intensity of I = 10. The
full parameter set is lited in appendix C.
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3.3 Enzymatic Model of Habituation with Single Incoherent Feed

Forward Motif

As showed in section 3.2.5 the key feature for frequency sensitivity is the reversal of memory

levels as an effect of concatenation. This is necessary in order to get faster recovery for

more frequent stimulation. To the best of our knowledge, the effect of stimulus intensity

(rather than frequency) on the recovery dynamics has not been systematically reviewed.

The hallmark of intensity sensitivity therefore only refers to the effect of faster habituation

for less intense stimuli and recovery times are not considered. Due to this lower amount of

constraints it may be assumed that network topologies that only account for may be less

complex.

Figure 16 shows a model based on a single IFF loop. The structure of the IFF motif is the

same as for the concatenated model with an input node (I) a memory species (M) and a

response (R). As shown in figure 17 the single IFF model can account for intensity sensitivity.

Within the scope of our parameter scans it was not possible to obtain frequency sensitivity

with the single IFF model.
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Figure 16: Incoherent feed forward (IFF) model. Active molecular species are highlighted
in lightblue and the bold arrows indicate an activating effect on the reactions they point to.

dI

dt
= S ∗ kIa(It − I)− kIiI

dM

dt
= I ∗ kMa(Mt −M)− kMi

M

M +KM

dR

dt
= I ∗ kRa(Rt −R)−M ∗ kRi

R

R+KR

(3)
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Figure 17: Response trajectories of the IFF model for different stimulation periods and
intensities. Habituation and recovery times are indicated in the right upper corner of each
plot. A list of all parameters can be found in appendix C.
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4 Discussion

Despite the fact that learning is typically associated with neuronal organisms, there is a

great amount of data for learning in single tissue cells and single-celled organisms.17,21,22,30

This poses the question of how learning is implemented on a cellular level. In this study

we provided a mechanistic model of habituation, a form of non-associative learning, which

can be interpreted in a cellular context without relying on any specific molecular substrate.

Conceptually, habituation and recovery are easy to obtain with an incoherent feed forward

(IFF) or negative feedback (NF) network architecture. However, it is more difficult to

account for the nontrivial hallmarks of frequency and intensity sensitivity.

In this work we showed that frequency sensitivity can be obtained by concatenation of two

IFF motifs. The main feature of the model is a reversal of memory levels between the two

motifs for different stimulation frequencies. Due to the fact that in our model the second

motif is less forgetful and decays much slower, the recovery dynamics of the whole system

is determined by the memory levels of the second motif. Within the scope of our study,

this holds for all stimulation frequencies. This finding is opposed to Staddon’s idea that

for higher frequencies recovery depends on the memory dynamics of the first module. For

suitable sets of parameters, more frequent stimulation results in a high level of memory

species of the first, more peripheral IFF motif and consequently leads to more pronounced

habituation. In turn, less input is passed on to the second motif, which therefore shows a low

memory buildup and hence results in faster recovery. In addition to frequency sensitivity,

the concatenated IFF model can also account for intensity sensitivity. Simplification of

the model architecture to a single IFF motif allowed to maintain the hallmark of intensity

sensitivity. However, an extensive search of the parameter space of the single IFF model did

not result in frequency sensitive behavior.

The fact that the two different IFF motifs of the presented concatenated model were found to

operate on different timescales, suggests that they might be implemented by different molec-

ular substrates. Possible candidates could be receptor modifications, signalling pathways,

post-translational modifications or gene regulatory networks.

In principle, reversal of memory levels can be achieved with a variety of different network

architectures, as long as the separate modules show habituating behavior. Since single

NF motifs can habituate (data not shown) they too are suitable building blocks for the

construction of concatenated models. However, the concatenated NF models tested by us

were computationally more difficult to integrate and it was not possible to obtain a parameter

set that could account for frequency and intensity sensitivity. The models presented in

this work are based on enzymatic transformations. IFF and NF motifs have been shown

to underlie perfect adaptation also in a gene regulatory setting.39 This suggests that in

addition to our enzymatic model, a model of habituation could be implemented with IFF

or NF motifs based on gene regulation.
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Experimental data from PC12 cells suggest that receptor activation plays an important role

in habituation.26,31 It would therefore be worth investigating the habituating behavior of

models based on different receptor states and how they could interact with more downstream

processes. A first modeling attempt involving activation of a receptor was performed by

Cheever and Koshland.31 Their simple ODE model was based on toggling between an active

and inactive receptor state but they did not investigate how the frequency and intensity of

stimulation could affect the habituating behavior.

The parameter scans were mainly limited by the size of the parameter space, which made it

unlikely to find a solution just by random sampling. In order to systematically investigate

a broader variety of network architectures a biased random sampling algorithm could be

used. This would require the definition of a scoring function, which quantifies how close or

far the behavior of the system is from frequency and intensity sensitivity. A set of randomly

selected starting parameters could then be modified and ”pushed” towards a target score in

order to obtain the intended behavior. This algorithm has successfully been applied to the

study of transcription factor synergy and energy expenditure in gene regulation.45,46

While the models presented in this work operate on the level of a single cell, more general

theories of habituation have been proposed in a neuronal context in behavioral literature.

In general, two main ideas can be distinguished. The dual-process theory by Groves and

Thompson emphasizes on the existence of two independent decremental and incremental

processes, which account for habituation and sensitization, respectively.44 The concatenated

as well as the single IFF model can show initial sensitization prior to habituation for certain

parameter sets (data not shown). This has primarily been observed for higher stimulation

frequencies. A possible explanation may be found in the distinction between the positive and

negative arm of the IFF loop. If the positive interaction between the input and response node

is fast enough, the signal might be transmitted prior to any substantial memory buildup.

If stimulation frequency is so high that there is not enough time for the response to fully

decay between two stimuli, this could lead to sensitization. The main difference to the

Groves-Thompson model is that there is no independent sensitization unit and sensitization

is merely a property of the habituating IFF loop.

The second class of theories was developed by Sokolov, Konorski and Wagner and relies on

the formation of an internal model, which is formed upon repetitive stimulation, and an

arousal system, which senses and amplifies the stimulus.47,48 The internal model exhibits

an inhibitory interaction on the amplifying system. This framework has apparent parallels

to an IFF motif architecture with the internal model acting as the inhibitory memory.

Internal models have recently been discussed in the context of learning from an informa-

tion processing point of view.18 The concept of internal models is useful in order to define

learning in a more formal and potentially quantitative way. According to the definition

of Gunawardena, learning is characterized by the formation of an internal model, which is

required to change the behavior of the learning agent. The content of the internal model
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4 DISCUSSION

may be quantified by the amount of mutual information between the learning system and

its environment.18

Adaptation has been proposed to rely on the formation of an internal model.18,49 Similarly,

the memory buildup during habituation in our IFF-based model may be related to an internal

model. In the context of habituation the internal model leads to a response decrement and

therefore induces a change in behavior. While the internal model in systems which are based

on NF motifs are reflexive, the IFF motif in our model could be seen as an instance of a

reflective internal model.

The model presented in this work provides theoretical evidence for the idea that habituation

can be implemented on the level of single cells and does not require networks of neurons. This

does not only enhance our understanding of the remarkable signal processing capabilities of

cells, but also sheds light on the evolutionary origins of learning.
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A HALLMARKS OF HABITUATION OBSERVED IN PC12 CELLS

A Hallmarks of habituation observed in PC12 cells

The following table lists all the hallmarks observed in PC12 cells. As discussed previously,

the hallmarks 3-5 rely on the definition of habituation time. The list presented here is based

on the (implicit) definitions used in the respective publications. For a more unified picture

on the behavior of PC12 cells, a reevaluation of the presented data may be necessary.

Table 6: Reported hallmarks of habituation in PC12 cells. The measured response vari-
able is norepinephrine release. Tested stimuli are ACh (acetylcholine), ATP (adenosine
triphosphate) and K+ (potassium).

# Hallmarks Stimulus Comments
1 Habituation K+26,30

ACh27,30,31

ATP31,32

2 Spontaneous recovery K+26 Only partial recovery.
ACh27,30,31 Only partial recovery.
ATP31

3 Potentiation of habituation K+26 Only partial recovery between trials.
ACh27,30,31 Only partial recovery between trials.
ATP31

4 Frequency sensitivity K+26 Stronger, but presumably not faster
habituation for higher frequencies.
Recovery was not tested. Data has
been normalized.

ACh27 Normalized data. Peaks have not
habituated. Recovery was not
tested.

ATP32 Normalized data. Not all peaks
have habituated. For higher fre-
quencies habituation is more pro-
nounced and more rapid. Recovery
was not tested.

5 Intensity sensitivity ATP32 Normalized data (Fig. 1). Indirect
evidence by analogy between habit-
uation and adaptation (Fig. 3).

6 Subliminal accumulation Not reported.
7 Stimulus specificity K+/ACh27,30 K+ and ACh habituate indepen-

dently of each other (specificity).
ATP/K+32 Stimulus generalization between

ATP and K+.
8 Dishabituation K+26 The drug Bay K 8644 and phorbol

esters have been used as dishabitu-
ating stimuli.

ACh27 Phorbol esters do NOT result in
dishabituation to ACh stimuli.

9 Habituation of dishabituation Not reported.
10 Long-term habituation Not reported.
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B LIST OF FILTERS FOR HABITUATION CURVES

B List of filters for habituation curves

Since integration of our ODE models results in a wide variety of different output trajectories,

we had to apply rules to filter for curves which show typical habituating behavior. For each

period between two stimuli, the peaks and troughs were extracted as the max and min of

the integration trajectory. This gives an array of peaks and troughs, respectively, on which

the following filters have been applied.

1) The array of peaks must not be empty.

2) The highest peak must not be found later than at the third position. This allows for

some sensitization for the very first stimuli.

3) The first peak must not be much lower than the highest peak. (By default not lower

than 50% of highest peak.)

4) All peaks after the highest peak must be monotonically decreasing.

5) There must be at least two peaks after the highest peak.

6) There must be a substantial difference between the highest and the lowest peak. (By

default at least 20% signal decrease.)

7) There must be a substantial difference between the first few peaks and troughs. (By

default, the difference between each normalized peak and trough must be at least 0.05.)

This serves the purpose of filtering out smoothly decaying curves.

8) Trough levels must not be too high. (By default not higher than 60% of the highest

peak.)

9) The last trough must be almost zero. (By default not higher than 2% of the highest

peak.)

10) The number of high troughs is limited. (By default there must not be more than five

troughs which are higher than 10% of the highest peak.)
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C DATA OF ALL FIGURES

C Data of all figures

In this section all relevant parameters from the data in the main text are displayed. This

allows to fully reconstruct the presented data. Initial conditions were 0 for all molecular

species. The first four parameters refer to the period, the stimulation time, the minimal

amplitude, which was usually set to 0, and the stimulus intensity. All other parameters

follow the order given in the definition of the respective ODE models.

C.1 Figure 3

model: concatenated IFF

parameters: 0.024366646737364918, 0.6162464867015266, 0.04447485832575715,

0.01740099161185905, 96.9944876579579, 0.5336874306312571, 1.0372075152178233,

0.00753947591894144, 0.10731703147619494, 8.181386493165336, 0.013407828310457707,

18.58860238207617, 0.5855331556741393, 28.116952462518515, 0.0015082670835452668,

50.991885097545904, 0.2868800965666724, 0.002644047166350287, 0.0030896811525613125,

0.06495662117058498, 0.43515426472637364, 0.36355907347111044

periods: 15 and persistent stimulus

intensities: 9.44

C.2 Figure 5

model: IFF

parameters: 15, 0.1, 0, 2, 0.0011998378605234663, 16.04286162611607, 4248.959943311437,

0.00028620801653459794, 138.7363107916044, 2.0435827204559653, 0.413866889388133,

4.1405371446772685, 0.23655612645275295, 0.001308557895722929, 0.006360762971267835,

0.8306938814717175, 0.1346249191091918, 1.6171711451866124, 0.1068425066241821

periods: 5, 15

intensities: 2

C.3 Figure 6

model: concatenated IFF

parameters: 24, 0.8, 0, 19.86726732820633, 13.373357718016345, 42.06731234284933,

34.27749905900168, 0.709470020226804, 1.617258011909472, 10.327382175922727,

1.0758427047289987, 0.002091525419021543, 0.012467994713152632, 0.4118802578935219,

73.1381783415525, 0.02494742755106409, 20.21786858757745, 3.7388443875609076,

0.06098016936573249, 1.2777199403071084, 0.35032117082355596, 0.02982553631982044,

0.36133837105762495, 26.147111831335078, 23.76822568869142, 3.323672416939637

periods: 16, 24

intensities: 19.862726732820633
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C.4 Figure 10, 11, 12, 13, 14 15

model: concatenated IFF

parameters: 13, 1.1111111111111112, 0, 10, 0.02320202797325348,

34.444923126046966, 4.216377156822992,0.23374762385737105, 21.343569877758522,

0.846886641845772, 12.652743115719046,0.0005245556966765035, 3.451779663144697,

3.2640433647323523, 2.5458652846171734, 0.004541338635022877, 8.733334023317827,

0.18909182921964465, 0.003144326356079373, 0.3565767612182425, 53.09936472431077,

2.000278819486687, 2.8497243825004994, 27.35741984065393, 2.732813518837399,

2.91549550812968

periods: 13, 19, 25

intensities: 10, 20, 30

C.5 Figure 17

model: IFF

parameters: 5, 0.5, 0, 4.508024302189586, 0.21431239109526712, 6.847671424297533,

0.004182136530799628, 0.8072215385326522, 0.004949310170350774, 98.04801954605847,

32.44935572372974, 0.002217674814821017, 2.380003203066648, 0.03652850995855296,

7.950356896778968, 0.19472486960861107, 1.4852248930584304, 0.015962998914022353,

0.003708017058489699, 3.314519158788617, 53.829283254737426, 0.10754566438231254,

7.088029916313852, 68.64017859545467, 84.99104335104246, 4.305905647453747
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