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Post-translational modification of proteins plays a central role in cellular regulation but its study has

been hampered by the exponential increase in substrate modification forms (‘‘modforms’’) with

increasing numbers of sites. We consider here biochemical networks arising from post-translational

modification under mass-action kinetics, allowing for multiple substrates, having different types of

modification (phosphorylation, methylation, acetylation, etc.) on multiple sites, acted upon by multiple

forward and reverse enzymes (in total number L), using general enzymatic mechanisms. These

assumptions are substantially more general than in previous studies. We show that the steady-state

modform concentrations constitute an algebraic variety that can be parameterised by rational functions

of the L free enzyme concentrations, with coefficients which are rational functions of the rate constants.

The parameterisation allows steady states to be calculated by solving L algebraic equations, a dramatic

reduction compared to simulating an exponentially large number of differential equations. This

complexity collapse enables analysis in contexts that were previously intractable and leads to biological

predictions that we review. Our results lay a foundation for the systems biology of post-translational

modification and suggest deeper connections between biochemical networks and algebraic geometry.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Post-translational modification (PTM) of proteins is a central
regulatory mechanism in eukaryotic cells (Walsh, 2006). Although
phosphorylation was the first modification to be discovered
(Fischer, 1997; Krebs, 1997), and remains the best studied,
proteins are subject to other types of modification by covalent
attachment of molecules to the side chains of amino acid residues.
The modifiers include other small molecules, as in methylation,
acetylation and sulfation, complex sugars, as in glycosylation, and
small protein moieties, as in ubiquitin-like modification (Walsh,
2006). It has become increasingly clear that these modifications
work together to orchestrate cellular function (Hunter, 2007).

PTMs are dynamically maintained. Forward enzymes, which
transfer modifiers from donor molecules to specific residues, are
usually competing against reverse enzymes, which hydrolyse
modified residues, detaching the modifier and returning it to the
pool from which donor molecules are synthesised. In the case of
phosphorylation, these enzymes are protein kinases and phos-
phoprotein phosphatases, respectively. These so-called ‘‘futile
cycles’’ of modification and demodification can use energy to
ll rights reserved.
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keep the concentrations of modified substrates far from equili-
brium, testifying to the importance of such processes as
regulatory mechanisms.

A given protein may be modified on multiple sites. For
instance, the transcription factor and tumour suppressor p53
has 18 serine/threonine sites that can be phosphorylated and 10
lysine sites that can accommodate acetylation, methylation and
attachment of ubiquitin, SUMO and NEDD (Kruse and Gu, 2008).
O-linked modifications like phosphorylation, on residues like
serine, threonine or tyrosine, are digital—at most one phosphate
group is attached to each residue—but N-linked modifications like
methylation, on residues like lysine or arginine, can be more
complex (Walsh, 2006). Ubiquitin, in particular, can form linear
and branched poly-ubiquitin chains connected by iso-peptide
linkages through lysine residues. In general, an individual
molecule with n sites of modification may be in one of several
global states of modification (‘‘modforms’’), whose numbers
increase exponentially with n. Cartoon diagrams often pick one
of these modforms, usually the maximally modified one, to depict
the state of a protein in the cell. However, there is always a
population of such molecules present and individual molecules in
the population may be in different states. The state of the
population is best described as a frequency distribution over these
single molecule states. We call this the modform distribution. Not
all modforms will necessarily be present at any one time but this
onal parameterisation theorem for multisite post-translational
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begs the question of which modforms are present and of how the
relevant forward and reverse enzymes cooperate to shape the
modform distribution. The methods of this paper were developed
in part to address such questions.

The combinatorial explosion in the number of potential
modforms is a challenge for both experiment and theory. Mass
spectrometry techniques have only recently begun to provide data
on modform distributions (Pesavento et al., 2008; Phanstiel et al.,
2008), prompted, in part, by the growing realisation that different
modforms may have distinct biological effects (Park et al., 2006;
Pufall et al., 2005; Wu et al., 2004). The theoretical challenge lies
in the complexity of any mathematical model, which must
accommodate some number, L, of forward and reverse enzymes
and some total number, N, of modforms targetted by those
enzymes. Additionally, the biochemistry of modification and
demodification usually requires intermediate enzyme–substrate
complexes associated to each enzyme and its substrates. If there
are P such intermediate complexes, then the model will have
LþNþP state variables, where N and P grow exponentially with n,
while L is relatively much smaller:

L5N; Ppan for some aZ2:

Because the dynamical equations are nonlinear, these models
cannot be analytically solved for the temporal trajectories of
the variables. Simulation provides the widely used alternative
to analytical solution. The trajectories of the system can be
calculated by numerical integration once the site-specific rate
constants have been given values. These values have usually not
been measured and it may be necessary to search through the
space of rate constants to determine whether a particular
behaviour is robust to the choice of rate constant values
(Gunawardena, 2009). Calculations of this kind rapidly become
infeasible with increasing n, which has limited simulation studies
to systems with few sites. These difficulties have made it hard to
see what, if any, general principles lie behind the widespread use
of multisite modification systems in cellular regulation.

In this paper we show that, if attention is restricted to the
steady states of a multisite PTM system, then it is not necessary
to numerically integrate LþNþP differential equations but only
to solve L algebraic equations (Theorem 3). Furthermore, this
reduction can be carried out without having to specify the rate
constant values in advance. For instance, for the case of two
enzymes, the steady states can be found by an analogue of the
nullcline analysis that is widely used for two-dimensional
systems of differential equations (Strogatz, 2001): the steady
states correspond to the intersections of two curves in the plane,
no matter what the number of sites. This exponential reduction in
complexity leads to biological insights in contexts that were
previously intractable, as reviewed in Section 4, and provides a
new theoretical foundation for studying multisite PTM systems.

The present paper generalises and conceptually simplifies a
method that emerged in previous work for systems with two
enzymes and one substrate (Manrai and Gunawardena, 2008;
Thomson and Gunawardena, 2009). It allows for multiple
enzymes, multiple types of modification, multiple substrates
and complex biochemistry of modification and demodification.
These assumptions are substantially more general than any used
previously in the literature (Ferrell and Bhatt, 1997; Goldbeter and
Koshland, 1981; Gunawardena, 2005; Kim and Ferrell, 2007;
Lisman, 1985; Markevich et al., 2004; Salazar and Höfer, 2007;
Shacter-Noiman et al., 1983). The main restrictions in terms of
applicability of our methods are the requirements that enzymes
cannot also be substrates and that the recharging mechanism for
each modification should keep the concentration of donor
molecules constant on the time scale of steady state formation.
The latter requirement is widely believed to hold for phosphor-
Please cite this article as: Thomson, M., Gunawardena, J., The rati
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ylation, in which the donor molecule is ATP, and it has been taken
for granted in all mathematical models of phosphorylation, but its
validity for other forms of modification appears not to have been
widely studied.

The two most significant examples that currently fall outside
the scope of our analysis are kinase cascades and ubiquitin-like
modifications. Both violate the first requirement by relying on
chains of enzymatic modification. We discuss how our results
might be extended to such cases in Section 4. It is an interesting
question whether ubiquitin-like modifications satisfy the second
requirement. Peptide modifiers are synthesised by mRNA transla-
tion rather than by the cell’s central metabolism, as is the case for
small molecule modifiers, and little is known about how
effectively this translation process is buffered against varying
demand.

Our method of proof is one of hierarchical elimination of
variables from the steady-state equations, which, because of
mass-action, are polynomials in the variables. The intermediate
enzyme–substrate complexes are first eliminated in favour of the
substrates and the enzymes (Proposition 1). Using the results of
this, the substrates are then eliminated in favour of the enzymes
(Proposition 2). Each elimination step is framed as the solution to
a system of linear equations (Lemma 2) but is undertaken over an
extension field of the real numbers, which carries the nonlinearity
that is present in the underlying steady-state equations. This
allows us to solve a nonlinear system of equations using
essentially linear methods. The extension field also permits the
rate constants to be treated symbolically during the elimination.
The Matrix-Tree theorem (Theorem 1) plays a key role in
identifying the nonlinear coefficients that arise in the elimination
steps. This important graph-theoretic result goes back to the 19th
century but was first stated in the form we use it in Tutte (1948). It
does not seem to have been previously noticed that the Matrix-
Tree theorem immediately implies the famous King–Altman
method, developed in King and Altman (1956), for calculating
the rate function of an enzyme (Cornish-Bowden, 1995). We find it
intriguing that the method we use to analyse multisite PTM
systems is so closely related to a key result of classical
biochemistry. Section 2 reviews the graph theoretic preliminaries,
including the Matrix-Tree theorem, before the main results are
presented in Section 3.

Our results are not derivable from any existing mathematical
theories of biochemical reaction networks, such as Chemical
Reaction Network Theory (CRNT) (Feinberg, 1979; Gunawardena,
2003), more recently developed injectivity methods (Craciun
et al., 2006; Soul�e, 2003) or Monotone Systems Theory (Angeli
et al., 2004). We believe that they are best interpreted in algebraic
geometric terms, as discussed at more length in an earlier paper
(Manrai and Gunawardena, 2008). Under the mass-action kinetics
used here, a network of biochemical reactions gives rise to a
polynomial dynamical system. Hence, for given rate constant
values, the steady states form a real algebraic variety (Cox et al.,
1997). Despite this, the use of algebraic geometric methods to
study biochemical networks has been surprisingly limited, the
most interesting exception being the use of toric varieties to
reinterpret the Deficiency Zero theorem of CRNT (Craciun et al.,
2009; Gatermann and Huber, 2002). For multisite PTM systems,
we show that the variety of steady-state modform concentrations
can be parameterised by L rational functions (Theorem 4). A
rational parameterisation provides an explicit description of
points on a variety, in contrast to their implicit definition as
solutions of polynomial equations. Rationally parameterisable
varieties are rare and of considerable interest in their own right.
The rationality of multisite PTM systems suggests that algebraic
geometry may provide powerful tools for analysing biochemical
reaction networks and overcoming molecular complexity. We may
onal parameterisation theorem for multisite post-translational
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hope, thereby, to better see the biological wood for the molecular
trees.
2. Preliminaries

2.1. Symbols and polynomials

In this paper we will analyse systems of ordinary differential
equations arising from networks of biochemical reactions under
mass-action kinetics. The rate constants and dynamical variables
are usually treated as real variables in R. In our analysis, we will
make use of certain directed graphs whose edges have labels like
aX, where a is a rate constant and X is a dynamical variable in
steady state. These labels must satisfy a positivity condition,
expressed in Lemma 1 below. The rate constants can reasonably
be taken to be positive but whether or not a dynamical variable is
positive in steady state is more delicate. Even if a system is started
with all its variables positive, it may not be persistent within the
positive orthant and may reach a steady state on the boundary in
which some variables are zero. To avoid having to rule out such
situations and thereby limit our analysis, we take a more algebraic
approach. We treat the rate constants and the dynamical variables
in steady state as uninterpreted symbols in an appropriate
extension field of R. We show that the calculations can be carried
out over this extension field and, having done them, we then give
real values to the symbols and draw conclusions over R. While
this avoids the problem and brings added benefits, it incurs some
technical cost. The reader will not lose much by assuming that
all calculations take place over R and ignoring the problems
that arise with loss of positivity in the dynamical variables. The
symbolic calculations only appear in Sections 3.3 and 3.4; rate
constants and dynamical variables are treated as real variables
elsewhere.

For more information about the algebraic methods reviewed
here see, for instance, Herstein (1975). For any finite set
Q ¼ fq1; . . . ; qng, R½Q � will denote the ring of real polynomials in
the elements of Q, considered as algebraically independent
symbols. Recall that a polynomial pAR½Q � is a linear combination
of monomials, p¼

P
a caqa, where caAR and each monomial qa is

a product of symbols,

qa ¼ qa1

1 � � � q
an
n with aiZ0:

RðQ Þ will denote the field of rational functions in the elements of
Q: the smallest field in which the symbols in Q can be added,
subtracted, multiplied and divided as if they were (non-zero)
numbers. Equivalently, RðQ Þ is the field of fractions of R½Q �: each
element f ARðQ Þ can be expressed as the ratio of two polynomials,
f ¼ p1=p2 where p1; p2AR½Q �. R½Q � sits inside RðQ Þ in the obvious
way: p¼ p=1.

For various finite sets Q, we will use elements of R½Q � as labels
in graphs, and use RðQ Þ as a field over which we solve linear
equations. For instance, Q may consist of rate constants. To relate
calculations over R½Q � or RðQ Þ back to biology, the symbols
ultimately have to be given real values. This is not a problem for
the polynomial ring R½Q �. Any assignment, i : Q-R, extends to a
homomorphism of rings i : R½Q �-R. Hence, any symbolic
algebraic expression in R½Q � gives rise to a corresponding
expression in R. However, the field of rational functions, RðQ Þ,
contains elements like 1=ðiðq1Þ � q1Þ, which become undefined in
R no matter what assignment of real values are made to elements
of Q. To infer an expression over R, it is essential to show that
nothing blows up in this way.

We make use of S-positivity to do this. A polynomial pAR½Q � is
said to be S-positive (‘‘sum positive’’) if it is a non-zero sum of
positive monomials. That is, p is S-positive if p¼

P
a caqaa0 and
Please cite this article as: Thomson, M., Gunawardena, J., The rati
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if ca40 whenever caa0. A rational function in RðQ Þ is said to be
S-positive if it can be expressed as the ratio of two S-positive
polynomials. If the elements of Q are given positive real values,
which is biochemically realistic for rate constants, then any
S-positive rational function in RðQ Þ will be well defined over R.
Note that, if Q ¼ |, so that R½Q � ¼R, then xAR½Q � is S-positive if,
and only if, it is positive in the usual sense.

If p¼
P

a caxaAR½Q � then p¼ 0 means that ca ¼ 0 for all a. If
i : Q-R, then p¼ 0 in R½Q � implies that iðpÞ ¼ 0AR. The converse,
of course, is false: if iðpÞ ¼ 0AR it does not imply that p¼ 0AR½Q �.
However, if pa0 then the variety in Rn corresponding to the set of
solutions of p¼ 0 has dimension strictly less than n. Hence, if
iðpÞ ¼ 0 for sufficiently many assignments i, then p¼ 0. Let Rþ

denote the positive reals.

Remark 1. If iðpÞ ¼ 0 for all i : Q-Rþ , then p¼ 0AR½Q �.

2.2. Graphs and Laplacians

A labelled, directed graph is a triple, ðV ; E; ‘Þ, where V is a finite
set of nodes, V ¼ fv1; . . . ; vng, E is a finite set of directed edges,
EDV � V , and ‘ : E-K� f0g is a function that associates to each
edge a non-zero label in some field K. Because they take values in
a field, labels can be treated algebraically as if they were numbers.
Usually, K¼RðQ Þ for some set of symbols Q and the labels are
elements of R½Q �. In place of a labelling function, the notation
vi-

a
vj will denote an edge from vi to vj with label a. We will

sometimes abbreviate this to vi-vj.
If G is a labelled, directed graph, G% will denote the

corresponding unlabelled, undirected graph, in which the direc-
tion of the edges is forgotten and multiple edges between the
same vertices are merged. We use vi2vj to denote an edge in G%.
Note that this could imply vi-vj or vj-vi or both in G. We say
that G is connected if G% is connected: if there is a chain of
undirected edges linking any two vertices. Any labelled, directed
graph is a disjoint union of connected components. G is strongly
connected if there is a directed path between any two distinct
vertices.

There is a bijective correspondence between matrices and
labelled, directed graphs. If A is a n� n matrix over K, let GðAÞ be
the associated labelled, directed graph with nodes f1; . . . ;ng and
labelled edges j-

Aij
i, if, and only if, Aija0. Note that entry Aij goes

from j to i. If G is a labelled, directed graph on f1; . . . ;ng, letMðGÞ
be the n� n matrix for which MðGÞij ¼ a if, and only if, j-

a
i.

Evidently, MðGðAÞÞ ¼ A and GðMðGÞÞ ¼ G.
If G is a labelled directed graph then its Laplacian matrix, LðGÞ,

is given by LðGÞ ¼MðGÞ � diagð1:MðGÞÞ. Here, 1 denotes the all 1’s
row vector of the appropriate dimension, 1¼ ð1; . . . ;1Þ, and
diagðvÞ, where v is a row vector, denotes the diagonal matrix
with v on the main diagonal

diagðvÞij ¼
vi if i¼ j;

0 otherwise:

(

The Laplacian encodes much information about graph structure;
see, for instance, Chung (1997), but note that the conventions
used here are different. Note also that, by construction, 1:LðGÞ ¼ 0.

Lemma 1. Let G be a labelled, directed graph on n vertices with no

self-loops in which each non-zero label is a S-positive element of

R½Q �. If G is strongly connected then the rank of LðGÞ over RðQ Þ is

n� 1.

Proof. Let u¼ ðu1; . . . ;unÞARðQ Þn. Since 1:LðGÞ ¼ 0, it is sufficient
to show that if u:LðGÞ ¼ 0 then u1 ¼ � � � ¼ unARðQ Þ. Express each
uiARðQ Þ as a fraction ui ¼ fi=gi, where fi; giAR½Q � and we may
suppose that gia0. We can now clear the denominators. Let
onal parameterisation theorem for multisite post-translational
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l¼ g1g2 � � � gna0 and vi ¼ lui. Then, viAR½Q � and v:LðGÞ ¼ 0. We
can now operate in the polynomial ring R½Q � in preference to
the field of fractions RðQ Þ. The entries in the Laplacian have the
following form. If ia j, LðGÞij is either zero or is a S-positive
element of R½Q �, while the diagonal entries are given by

LðGÞii ¼ �
X
ka i

LðGÞki:

Hence, for the i-th column of v:LðGÞ ¼ 0,X
ka i

ðvk � viÞLðGÞki ¼ 0: ð1Þ

So far, this has all been symbolic, in R½Q �. Now suppose that
the symbols in Q are given positive real values and, suppressing
the corresponding assignment i : Q-Rþ for readability, let us
consider the corresponding system of column equations to (1) in
R. Since the vi are now real numbers, there is a smallest, vp, for
which viZvp for all i. Let UDf1; . . . ;ng be the set of those indices i

for which vi ¼ vp. Ua| since pAU. If mAU, then, in the m-th
column equation,X
kam

ðvk � vmÞLðGÞkm ¼ 0;

each non-zero term is the product of a non-negative quantity,
vk � vm, since vm is smallest, and a strictly positive quantity
LðGÞkm, since each label in G is S-positive. It follows that
vk ¼ vm ¼ vp whenever there is an edge m-k, so that U is closed
under outgoing edges. Since G is strongly connected, U ¼ f1; . . . ;ng.
Hence, vi ¼ vpAR for all i. Since this holds for any assignment of
positive values to symbols in Q we deduce from Remark 1 that
v1 ¼ � � � ¼ vn symbolically in R½Q �. Since la0 we see that
u1 ¼ � � � ¼ unARðQ Þ, as required. &

Some condition on the labels is necessary for the conclusion of
Lemma 1. The following labelled, directed graph on f1;2;3g, with
labels in R, is strongly connected

1�!
1

2; 2�!
2

1; 1�!
1

3; 3�!
2

1; 2�!
�1

3; 3�!
�1

2;

but its Laplacian has rank 1, not 2:

�2 2 2

1 �1 �1

1 �1 �1

0
B@

1
CA:

Remark 2. If M is any n� n matrix, we can construct a labelled
directed graph with no self-loops by ignoring the labels on the
main diagonal: G¼ GðM � diagðMiiÞÞ. If, in addition, 1:M¼ 0, then
M is the Laplacian of G:

LðGÞ ¼ ½M � diagðMiiÞ� � diagð1:½M � diagðMiiÞ�Þ ¼M
� diagðMiiÞþdiagðMiiÞ ¼M:

2.3. The Matrix-Tree theorem

In what follows we will need to solve linear systems of the
form M:z¼ 0, where M is a n� n matrix over some field K, z is a
column vector of n unknowns and M has rank n� 1. Recall that
the adjugate matrix of M, adjðMÞ, is defined by

adjðMÞij ¼ ð�1Þiþ jMðjiÞ; ð2Þ

where MðjiÞ is the maximal minor given by the determinant of the
ðn� 1Þ � ðn� 1Þmatrix obtained from M by removing the j th row
and i th column. Note the reversal of indices in (2). The adjugate
satisfies the Laplace relations

adjðMÞ:M¼M:adjðMÞ ¼ detðMÞI:
Please cite this article as: Thomson, M., Gunawardena, J., The rati
modification systems. J. Theor. Biol. (2009), doi:10.1016/j.jtbi.2009.0
If rkðMÞ ¼ n� 1, any column vector of adjðMÞ is a basis for the
column null space. Taking the first column, let

zi ¼ adjðMÞi1 ¼ ð�1Þiþ1Mð1iÞ; ð3Þ

so that M:z¼ 0.

The maximal minors have a particularly striking form when M

is a Laplacian matrix. Let G be a labelled, directed graph with no
self-loops. T is said to be a spanning tree of G if T is a directed
subgraph which reaches each node of G such that T% is connected
and acyclic. T inherits labels from G. T is said to be rooted at vAG if
v is the unique sink in T. That is, v is the only node of T with no
edges leaving it, vQw. This implies that any non-root node has
exactly one edge leaving it, for otherwise there would either be an
additional sink or an undirected cycle. Let YvðGÞ denote the set of
spanning trees of G rooted at v.

Theorem 1 (The Matrix-Tree theorem, Tutte, 1948, Section 3.6). Let

G be a directed graph on f1; . . . ;ng with labels in the field K and no

self-loops. The maximal minors of the Laplacian are given by

LðGÞðijÞ ¼ ð�1Þnþ iþ j�1
X

T AYjðGÞ

Y
k-

a
lAT

a

0
@

1
A:

It is remarkable that the maximal minor is, up to a sign, just
a sum of products of labels, since the determinant itself is a
sum with alternating signs. Results like Theorem 1 go back to the
19th century work of Kirchhoff on electrical networks and of
Sylvester and others on elimination theory; see Moon (1970,
Chapter 5) for references. Combining (3) with Theorem 1, we get
the following.

Lemma 2. Let M be a n� n matrix over a field K such that 1:M¼ 0
and rkðMÞ ¼ n� 1. Let G be the labelled, directed graph constructed

as in Remark 2 for which M¼LðGÞ. The one-dimensional column null

space of M is generated by the vector r¼ ðr1; . . . ;rnÞ
t, where,

ri ¼ ð�1Þnþ1
X

T AYiðGÞ

Y
k-

a
lAT

a

0
@

1
A: ð4Þ

There is a simple condition for x to also be in the null space of M.

Remark 3. Suppose that x;rAKn with rka0 for some 1rkrn.
Then, x¼ lr if, and only if, xi ¼ ðri=rkÞxk for 1r irn.

The quantities ri=rk will play an important role below; see (8),
(20) and (24). In these calculations, the labels will lie in R½Q �

and will either be symbols, like q1, or S-positive polynomials, like
q1q2þq3q4. Under these conditions, we see from (4) that each ri is
either 0, if there are no spanning trees rooted at vertex i,
of, if there are such spanning trees, ri is ð�1Þnþ1 times a
S-positive polynomial. Accordingly, ri=rk is a S-positive rational
function.

2.4. The King–Altman method

If the biochemical mechanism of an enzyme is known, its rate
function is often calculated in the quasi-steady state approxima-
tion (Cornish-Bowden, 1995). King and Altman worked out a
graphical method for doing this that is widely used (Cornish-
Bowden, 1995; King and Altman, 1956). It seems not to have been
previously noticed that this is an immediate application of the
Matrix-Tree theorem. Since we will see the Matrix-Tree theorem
at work in more detail later, we illustrate the application to rate
functions with the simple example of reversible Michaelis–
Menten kinetics. Here, enzyme E and substrate S reversibly form
an enzyme–substrate complex Y, which reversibly yields enzyme
onal parameterisation theorem for multisite post-translational
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E + Su Yj E + SvYk

Ym

E + Su Yj E + Sv

E + Sp

E + Sw

E + Su Yj E + SvYkE + Sv

Ym

E + SwE + Su Yj Yk

Ym

E + Sp

E + Sw

E + Su Yj

E + Sv

Yk

Ym Yk

E + Su Yj E + Sv

E + Sv

Fig. 1. Examples of sub-networks. (a) Michaelis–Menten style enzyme, with a

single enzyme–substrate complex, Yj , and reversible product formation, as in (5).

(b) Example with two enzyme–substrate complexes, Yj , Yk , leading irreversibly to

Sv , along with a dead-end complex Ym. (c) Example used in Thomson and

Gunawardena (2009), with a single enzyme–substrate complex Yj and multiple

products Sp , Sv , Sw. (d) Alternative network to (c) with a different enzyme–

substrate complex for each product. (e) Example with partially overlapping routes

for different products. (f) Cyclic network, which may not correspond to known

biochemistry but is mathematically allowed.
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and product P (compare Fig. 1a):

EþS"
b

a
Y "

d

c
EþP: ð5Þ

The rate constants, a; b; c; d are all taken to be positive. The
quasi-steady state approximation assumes that Y reaches steady
state while substrate is being converted to product. Under mass-
action kinetics, the differential equations for E and Y are

dE

dt
¼ � ðaSþdPÞ:EþðbþcÞY ;

dY

dt
¼ ðaSþdPÞ:E� ðbþcÞY : ð6Þ

Note that E is at steady-state, if, and only if, Y is at steady state
(compare Lemma 3). Hence, (5) is in quasi-steady state, if, and
only, if, (6) is in steady state. At steady-state, the right-hand side
of (6) is a system of linear equations in E and Y. We can ignore the
uninteresting case when S¼ P¼ 0 and assume that the
coefficients of (6) are positive, thereby avoiding symbolic
calculations. Let M be the corresponding matrix over R for the
basis fE;Yg. We see from (6) that 1:M¼ 0. Since rkðMÞ ¼ 1 by
inspection, we can use Lemma 2 to find solutions of M:z¼ 0. The
labelled, directed graph formed from M according to Remark 2, is

E "
aSþdP

bþ c
Y : ð7Þ

This has a single spanning tree rooted at E, Y�!
bþ c

E, and a single
spanning tree rooted at Y, E �!

aSþdP
Y . By Lemma 2, a basis for the

column null space of M is

�ðbþcÞ

�ðaSþdPÞ

 !
:

Please cite this article as: Thomson, M., Gunawardena, J., The rati
modification systems. J. Theor. Biol. (2009), doi:10.1016/j.jtbi.2009.0
By Remark 3, M:z¼ 0 if, and only, if

zY ¼
a

bþc

� �
Sþ

d

bþc

� �
P

� �
zE: ð8Þ

We see that, at steady state, the enzyme–substrate complex is the
free enzyme times a linear combination of substrate and product.
The coefficients of the linear form are reciprocals of the forward
and reverse Michaelis–Menten constants, Kf ¼ ðbþcÞ=a and
Kr ¼ ðbþcÞ=d (Cornish-Bowden, 1995) (compare Proposition 1).
The rate function can now be determined using the conservation
law for the enzyme, zEþzY ¼ Etot , giving, as in Cornish-Bowden
(1995),

dP

dt
¼

cEtot

Kf
S�

dEtot

Kr
P

1þ
S

Kf
þ

P

Kr

:

This simple calculation may provide some orientation for the
more involved treatment that now follows.
3. Results

3.1. The system equations

We begin by setting up a general model for a PTM system.
There are three kinds of chemical species in the system: enzymes,
substrates and intermediate enzyme–substrate complexes. Let
Enz, denote a non-empty, finite set of enzymes, Sub, a non-empty,
finite set of substrate modforms and Int, a non-empty, finite set of
enzyme–substrate complexes. A non-empty, finite set of sub-
networks, Net, is defined in terms of these:

Enz¼ fE1; . . . ; ELg;

Sub¼ fS1; . . . ; SNg;

Int¼ fY1; . . . ;YPg;

Net¼ fT1; . . . ; TMg:

Each sub-network, TANet, consists of an associated enzyme,
eðTÞAEnz, a non-empty subset of modforms, sðTÞDSub, a non-
empty subset of enzyme–substrate complexes, gðTÞD Int, and a
reaction network, NðTÞ, defined below. The sub-networks encode
the biochemical details of how enzymes convert modforms.

This formulation allows for multiple forward and reverse
enzymes, which may catalyse different types of modification and
demodification. Multiple substrates are also permitted; the
distinction between them will emerge in the calculation, as part
of Condition 2. The combinatorics of multisite modification are
not directly represented: the modforms of all substrates are
simply listed 1; . . . ;N. As discussed in the Introduction, N and P

may be exponentially larger than L.
The enzyme–substrate subsets must be disjoint between

distinct sub-networks: if ia j then gðTiÞ \ gðTjÞ ¼ |. However,
distinct sub-networks may share both modforms and enzymes.
We assume, without loss of generality, that each substrate is in
some sðTÞ and each enzyme–substrate complex in some gðTÞ

[M
i ¼ 1

sðTiÞ ¼ Sub;
[M

i ¼ 1

gðTiÞ ¼ Int:

Given YA Int, tðYÞANet denotes the (unique) sub-network con-
taining Y.

For E¼ eðTÞ, any SuAsðTÞ and any Yv;Yi;YjAgðTÞ, the sub-
network NðTÞ is made up of any reactions of the following
onal parameterisation theorem for multisite post-translational
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three kinds:

EþSu�!
aT

u;v

Yv;

EþSu’
bT

u;v
Yv;

Yi�!
cT

i;j

Yj: ð9Þ

We further assume Condition 1 in Section 3.3 and Condition
2 in Section 3.4. These are strong connectivity condi-
tions on certain graphs that allow Lemma 1 to be used.
They will be stated after introducing additional concepts
below.

The reactions (9) imply that enzyme is conserved—it is either
free or bound in some enzyme–substrate complex—while sub-
strate can flow between different modforms. While not much is
known about the biochemical details of how enzymes modify
multisite substrates, the sub-network assumptions allow con-
siderable flexibility. They can accommodate, for instance, over-
lapping site preferences, arbitrary orders of modification and
demodification, distributivity or processivity (Ferrell and Bhatt,
1997) and intricate hierarchical dependencies between enzymes
(Ferrarese et al., 2007; Roach, 1991). Some simple examples are
shown in Fig. 1. The main assumption behind (9) is that the donor
molecules that provide the modifier are kept at constant
concentration, on the time scale of the PTM dynamics, by
mechanisms that are not explicitly modelled. As mentioned in
the Introduction, this assumption has always been made for
phosphorylation but needs further investigation for other mod-
ifications. It means that the donor molecules do not have to be
treated as dynamical variables; their affects can be absorbed into
the rate constants. This permits both forward and reverse
reactions to be bimolecular with only enzyme and substrate.
(In fact, we are implicitly making a similar assumption for the
reverse reactions by ignoring the water molecules needed for
hydrolysis.) Enzymes would normally be expected to give rise to
tree networks, as in Fig. 1a–e, but cyclic networks like Fig. 1f are
mathematically allowed.

The data above give rise to a polynomial dynamical system
defined by mass-action kinetics on the set of chemical species,
Sub [ Enz [ Int. For 1rurN; for 1rvrP, T ¼ tðYvÞ, E¼ eðtðYvÞÞ;
and for 1rwrL,

dSu

dt
¼

X
Su AsðTÞ

X
eðTÞþ Su2Yj AN%ðTÞ

ðbT
u;jYj � aT

u;jeðTÞSuÞ

0
@

1
A; ð10Þ

dYv

dt
¼

X
Yv2Yj AN%ðTÞ

ðcT
j;vYj � cT

v;jYvÞþ
X

EþSj2Yv AN%ðTÞ

ðaT
j;vSjE� bT

j;vYvÞ; ð11Þ

dEw

dt
¼

X
eðTÞ ¼ Ew

X
Ewþ Si2Yj AN%ðTÞ

bT
i;jYj � aT

i;jEwSi

� �0
@

1
A: ð12Þ

Terms like cT
j;vYj � cT

v;jYv in Eq. (11) are indexed over edges in the
undirected graph N%ðTÞ. If one or other corresponding directed
edge is not present in NðTÞ, the associated label should be treated
as if it were zero. In other words,

X
Yv2Yj AN%ðTÞ

ðcT
j;vYj � cT

v;jYvÞ ¼
X

Yj-Yv ANðTÞ

cT
j;vYj �

X
Yv-Yj ANðTÞ

cT
v;jYv:

Indexing over N%ðTÞ is purely a notational convenience, which
allows for a more compact syntax.
Please cite this article as: Thomson, M., Gunawardena, J., The rati
modification systems. J. Theor. Biol. (2009), doi:10.1016/j.jtbi.2009.0
3.2. Conservation laws

In this section, the rate constants and dynamical varia-
bles in (10)–(12) are treated as real variables. The structure of
these equations can be better seen in terms of fT , the net
flux of enzyme out of sub-network T. By definition,

fT ¼
X

eðTÞþ Si2Yj AN%ðTÞ

bT
i;jYj � aT

i;jeðTÞSi;

so that Eq. (12) can be rewritten as

dEw

dt
¼

X
eðTÞ ¼ Ew

fT : ð13Þ

Moreover, if (11) is added up for all YvAT , we get a sum of two
terms. The first term counts each binomial cT

j;vYj � cT
v;jYv twice with

opposite sign and hence vanishes. The second term is just �fT .
Hence,

fT ¼ �
X

Yv AgðTÞ

dYv

dt
: ð14Þ

Finally, the enzyme flux from T is equal to the flux of all substrate
modforms from T. Summed over all sub-networks, this gives the
total substrate flux. More formally, if Eq. (10) is added up for all
substrates, then, rearranging the order of summation, and noting
that each EþS2Y is unique since the Y are not shared, we
see that

X
uASub

dSu

dt
¼
X

T ANet

fT : ð15Þ

From (13) and (14) we see that

d

dt
Ewþ

X
eðTÞ ¼ Ew

X
Yv AgðTÞ

Yv

0
@

1
A

0
@

1
A¼ 0:

The term being differentiated is evidently the total amount of
enzyme Ew in the system, which we conclude to be the same at all
times. Similarly, from (14) and (15) we see that

d

dt

X
uASub

Suþ
X

T ANet

X
Yv AgðTÞ

Yv

0
@

1
A

0
@

1
A¼ 0:

The term being differentiated is the total amount of substrate in
the system, which must also be the same at all times. Let Stot be
the total amount of substrate and Ew;tot the total amount of
enzyme Ew. We see that, at all times, the following Lþ1
conservation laws hold:

Ewþ
X

eðTÞ ¼ Ew

X
Yv AgðTÞ

Yv

0
@

1
A¼ Ew;tot ; ð16Þ

X
uASub

Suþ
X

T ANet

X
Yv AgðTÞ

Yv

0
@

1
A¼ Stot : ð17Þ

Of course, these conservation laws are evident from the form of
the allowed reactions in (9) but the derivation above checks the
correctness of the system equations and illuminates the role of fT .
Reinforcing that, the following immediate consequence of (14) is a
key result.

Lemma 3. In any steady state, for any sub-network T, fT ¼ 0.

It is instructive to see this another way, which does not depend
on the details of how (14) is proved. In any steady state, the
enzyme flux out of T cannot be negative. In other words, there
cannot be positive flux of enzyme into T. If there were, this flux
cannot escape through any YvAT, since the enzyme–substrate
onal parameterisation theorem for multisite post-translational
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complexes are not shared between sub-networks. Hence, it would
accumulate somewhere, violating the steady state assumption.
Accordingly, fT Z0. But then from (13), dEw=dt is a sum of non-
negative terms, so that if dEw=dt¼ 0, then fT ¼ 0 for each
eðTÞ ¼ Ew.
3.3. Generalised Michaelis–Menten constants

Lemma 3 says that, at steady state, not merely is dEw=dt¼ 0,
but each individual fT ¼ 0. This decouples the system at
steady state and allows us to treat each sub-network in
isolation.

In this section and the next we will work symbolically. Let Con
denote the set of all rate constants for all sub-networks TANet
and all reactions (9) in NðTÞ,

Con¼ faT
u;v;b

T
u;v; c

T
i;jg:

Let T be any sub-network and E¼ eðTÞ. In any steady state of the
system, it follows from (11) and Lemma 3 that for all YvAgðTÞ the
following equations are satisfied:X
Yv2Yj AN%ðTÞ

ðcT
j;vYj � cT

v;jYvÞþ
X

Eþ Sj2Yv AN%ðTÞ

ðaT
j;vSjE� bT

j;vYvÞ ¼ 0; ð18Þ

X
EþSi2Yj AN%ðTÞ

ðbT
i;jYj � aT

i;jSiEÞ ¼ 0: ð19Þ

These form a system of linear equations in the variables E and
YvAgðTÞ, with coefficients in R½Con [ Sub�. Assume, without loss
of generality, that gðTÞ ¼ fY1; . . . ;Yp�1g where p� 1rP. Let us use
the notation Yp ¼ E temporarily, for the purposes of this argument.
Let MT denote the p� p matrix over the field RðCon [ SubÞ
corresponding to (18) and (19). Evidently, MT :Y

t ¼ 0 where Y is the
row vector, Y ¼ ðY1; . . . ;YpÞ. Furthermore, it follows from (14) that
1:MT ¼ 0.
Fig. 2. Steady state calculation for the sub-network in Fig. 1e. (a) The network in

Fig. 1e with labels on the reactions according to (9). (b) The modified graph, GT , on

the vertices Yj , Yk , Ym and E with the new labels in R½Con [ Sub�, as listed in the

table below. The edges outgoing from E, numbered 1, 2 and 3, have labels which

are linear and homogeneous in the modforms, while all other edges have labels

which are rate constants. (c) The spanning trees rooted at each vertex of GT , from

which the maximal minors in (4) are calculated.

Please cite this article as: Thomson, M., Gunawardena, J., The rati
modification systems. J. Theor. Biol. (2009), doi:10.1016/j.jtbi.2009.0
Let GT be the labelled, directed graph formed from MT as in
Remark 2, so that MT ¼LðGT Þ. Fig. 2b shows this graph for the sub-
network in Fig. 1e. GT is identical to NðTÞ for all edges between Yi

for 1r iop. However, each edge EþSu�!
aT

u;v

Yv in NðTÞ corresponds

to the edge Yp-Yv in GT with aT
u;vSu added to its label. Similarly,

each edge Yv�!
bT

u;v

EþSu in NðTÞ corresponds to the edge Yv-Yp in GT

with bT
u;v added to its label. The labels in GT are all S-positive

elements of R½Con [ Sub�. We can now state the first additional
condition.

Condition 1. For any sub-network T, GT is strongly connected.

All the examples in Fig. 1 satisfy this condition, which seems
biochemically reasonable.

By Lemma 1, MT has rank p� 1. Accordingly, a basis vector for
the column null space is given by (4). The labels on the edges of GT

are rate constants, cT
i;j; b

T
u;vACon, except for the edges outgoing

from Yp, whose labels are homogeneous linear combinations of
modforms (Fig. 2b). It follows that each spanning tree rooted at Yp

has a label product in R½Con�, while any spanning tree rooted at Yi,
for iap, has a label product that is homogeneous linear in the
modforms with coefficients in R½Con�. Hence, by (4), rp is a S-
positive element of R½Con�, while ri, for iap, is a homogeneous
linear combination of modforms whose non-zero coefficients are
S-positive elements of R½Con�. Let mT

i;uARðConÞ be such that, for
1r iop,

ri

rp

¼
X

Su AsðTÞ
mT

i;uSu: ð20Þ

The mT
i;u are, by definition, generalised Michaelis–Menten con-

stants (compare the discussion in Section 2.4). Note that, as
defined here, these are reciprocals of the usual Michaelis–Menten
constants (Cornish-Bowden, 1995). We prefer this convention
because it allows these constants to be 0 when necessary, in
preference to having to be 1. By construction, the Michaelis–
Menten constants are either 0 or are S-positive elements of
RðConÞ. In particular, they are well defined for any positive values
of the rate constants in Con. The Michaelis–Menten constants for
the example in Fig. 1e are shown in Table 1.

Using Remark 3, we have proved the following generalisation
of (8).

Proposition 1. For any sub-network TANet, the sub-network

Eqs. (18) and (19) are satisfied, if, and only if,

Yi ¼
X

Su AsðTÞ
mT

i;uSu

 !
eðTÞ; ð21Þ

for 1r iop.
Table 1
Generalised Michaelis–Menten constants for the example in Fig. 1e.

Su Sv Sw Sp

Yj aT
u;jðb

T
v;kþcT

k;jÞ

D

aT
v;kcT

k;j

D

aT
w;jðb

T
v;kþcT

k;jÞ

D

0

Yk aT
u;jc

T
j;k

D

aT
v;kðb

T
u;jþbT

w;jþcT
j;kÞ

D

aT
w;jc

T
j;k

D

0

Ym aT
u;m

bT
p;mþbT

u;m

0 0 aT
p;m

bT
p;mþbT

u;m

D bT
v;kðb

T
w;jþcT

j;kÞþbT
w;jc

T
k;jþbT

u;jðb
T
v;kþcT

k;jÞ

The entries in the first three rows are the mT
x;y ARðConÞ defined in Proposition 1 for

x¼ j; k;m and y¼ u; v;w; p. The last row gives the denominator term D appearing in

the entries for Yj and Yk . Note the S-positivity of all entries.

onal parameterisation theorem for multisite post-translational
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3.4. Linearising the modforms

In steady state, the enzyme–substrate complexes satisfy (21).
Substituting these into the expressions for the modforms given
by (10) we obtain

X
Su AsðTÞ

X
eðTÞþ Su2Yj AN%ðTÞ

X
Sv AsðTÞ

bT
u;jm

T
j;veðTÞSv

 !
� aT

u;jeðTÞSu

 !0
@

1
A¼ 0:

ð22Þ

These expressions are linear in the Su with coefficients which
are S-positive polynomials in RðConÞ½Enz�. Note the critical need
at this point for Yi in (21) to be linear in the Su. Let MS be the
corresponding N � N matrix over RðCon [ EnzÞ for the basis
S1; . . . ; SN . By Lemma 3, fT ¼ 0 in steady state for all sub-networks
TANet. Hence, by (15), 1:MS ¼ 0. Let GS be the labelled, directed
graph obtained from MS as in Remark 2, so that MS ¼LðGSÞ. To
understand the structure of GS, it is convenient to extend the
definition of the Michaelis–Menten constants so that mT

i;u ¼ 0 for
all Su =2sðTÞ. We can then replace SuAsðTÞ in (20) with SuASub.
With this convention, after collecting the coefficients of Sv in (22),
we see that the label on the edge Sv-Su may be written

X
T ANet

X
SuþeðtÞ’Yj ANðTÞ

bT
u;jm

T
j;v

0
@

1
AeðTÞ;

whenever that expression is non-zero. Terms like bT
u;jm

T
j;v are

familiar to biochemists as catalytic efficiencies. For each TANet
and any distinct pair Su; SvASub, define the (generalised) catalytic
efficiency, kT

u;v, by

kT
u;v ¼

X
SuþeðTÞ’Yj ANðTÞ

bT
u;jm

T
j;v:

Note that kT
u;v ¼ 0 if Sv=2sðTÞ. If not 0, kT

u;v is a S-positive element
of RðConÞ. With this notation, we can rewrite the label on the edge
Sv-Su asX
T ANet

kT
u;veðTÞ; ð23Þ

whenever that expression is non-zero. Fig. 3 shows GS for the
example in Fig. 1e.

The catalytic efficiencies provide a more concise set of labels
for GS than the original rate constants. Let Cat denote the set of all
non-zero generalised catalytic efficiencies:

Cat¼ fkT
u;va0jSu; SvASubg:

Note that RðCatÞ is a subfield of RðConÞ and that any S-positive
element of RðCatÞ is also S-positive as an element of RðConÞ. The
labels on GS are S-positive polynomials in R½Cat [ Enz�, which are
Fig. 3. Modform graph, GS , for the example in Fig. 1e with the labels shown as

generalised catalytic efficiencies, kT
�;� , in the accompanying table. The bT

�;� are given

in Fig. 2a while the generalised Michaelis–Menten constants, mT
�;� are given in

Table 1.

Please cite this article as: Thomson, M., Gunawardena, J., The rati
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homogeneous and linear in the Ew. We may regard MS as a N � N

matrix over RðCat [ EnzÞ.
Since the modforms may include distinct substrates, we cannot

assume that GS is connected. We can now state the second
condition for the systems considered here.

Condition 2. The connected components of GS are strongly
connected.

This condition is biochemically reasonable. For a given
substrate, each modification is usually balanced by another
enzyme carrying out a de-modification. This implies strong
connectivity of the corresponding component of GS. Distinct
substrates will give rise to distinct components. Although Fig. 1e
has only a single enzyme, the reversibility of the sub-network is
sufficient in this case to give a single component which is strongly
connected, as in Fig. 3.

Condition 2 implies that MS is block diagonal, with each block
corresponding to one of the connected components. Each block
can be treated separately. To avoid further complicating the
exposition, we assume from now on that MS is a single block and
that GS is strongly connected. We point out what needs to be done
for the general case but leave it to the reader to write down the
details. Since, by Lemma 1, rkðMSÞ ¼N � 1, we can apply Lemma 2
to obtain a basis vector for the column null space of MS. Since GS is
strongly connected, it has at least one spanning tree rooted at each
vertex. It follows from (23) that, in the notation of (4), ri is a
S-positive element of R½Cat [ Enz� which is homogeneous in the
Ew and of degree N � 1, since there are that many edges in any
spanning tree. Hence, ru=r1 is a rational function in RðCat [ EnzÞ,
which we may write as a rational function of the enzymes,

ru

r1

¼ ruðE1; . . . ; ELÞ; ð24Þ

whose non-zero coefficients are S-positive elements of R½Cat�.
Here, we have, without loss of generality, chosen S1 as a reference
modform. With multiple components, a reference modform will
be needed for each component. Since the ru are each homo-
geneous of degree N � 1, it follows that, for lAR,

ruðlE1; . . . ; lELÞ ¼ ruðE1; . . . ; ELÞ; ð25Þ

so that the ru are, in fact, inhomogeneous functions of any L� 1 of
the variables. For instance, if ELa0, then

ruðE1; . . . ; ELÞ ¼ ru
E1

EL
; . . . ;

EL�1

EL
;1

� �
:

Using Lemma 2 and Remark 3, we deduce the following
analogue of Proposition 1.

Proposition 2. The modform equations (22) are satisfied if, and only

if,

Su ¼ ruðE1; . . . ; ELÞS1: ð26Þ

Examples of the rational functions ru for the case of a single
kinase, single phosphatase and single substrate with two sites are
given in Manrai and Gunawardena (2008).

3.5. The main results

We can now put everything together and return from symbols
to real variables. Let us consider any multisite PTM system
satisfying the assumptions in Section 3.1 along with Conditions 1
and 2. We assume that the rate constants have positive real
values. In this case, the maximal minor r1 appearing in (24) is a
real polynomial of degree N � 1 in the enzymes and r1 ¼ 0 defines
a hypersurface in RL. As long as the vector of enzyme values lies
off this hypersurface, the rational functions in (24) are well
onal parameterisation theorem for multisite post-translational
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defined. If GS has many components, a similar proviso must
be made for each of them, in respect of the maximal minor for
the corresponding reference modform. Note that, since r1 is
S-positive in R½Enz�, any vector in the positive orthant will satisfy
r1a0. Hence, under biochemically realistic conditions, the ru are
always well defined.

Theorem 2. In any steady state of the system for which the enzyme

values satisfy r1a0, Eqs. (26) and (21) hold. Conversely, if the

enzymes have values in R for which r1a0, S1 has values in R, the Su

are defined by (26) and the Yv are defined by (21), then these

quantities form a steady state of the system.

Proof. We have shown the first part above. Now suppose that
EiAR, such that r1ðE1; . . . ;ELÞa0, and S1AR. Define Su by (26),
which we may do since r1a0, and Yv by (21), as specified. For any
TANet, it follows from Proposition 1 that the corresponding sub-
network equations (18) and (19) are satisfied. Since (18) is just
(11) at steady state, we see that dYv=dt¼ 0 for all YvAT.
Furthermore, the expression on the left-hand side of (19) is, by
definition, the net flux of enzyme out of T, fT . Hence, fT ¼ 0. Since
this holds for all TANet, we see from Eq. (13) that dEw=dt¼ 0.
Since (26) had to be satisfied to define the Su, it follows from
Proposition 2 that (22) is satisfied. Since this is just (10) at steady
state after substitution of (21), which has also been satisfied, we
see that dSu=dt¼ 0. It follows that the system is at steady
state. &

If the system has specified total amounts of substrate and
enzymes, it satisfies the conservation laws (16) and (17). These
provide Lþ1 equations for the L enzymes and the substrate. For
each sub-network TANet, let fT AR½Enz� denote the S-positive
polynomial

fT ðE1; . . . ; ELÞ ¼
X

Yv AgðTÞ

X
Sw AsðTÞ

mT
v;wrwðE1; . . . ; ELÞ

 !
:

It follows from Proposition 1, that, whenever r1a0,X
Yv AgðTÞ

Yv ¼fT eðTÞ
S1

r1

:

Let DAR½Enz� denote the S-positive polynomial,

D¼
X

uASub

ruþ
X

T ANet

fT eðTÞ: ð27Þ

Rewriting (17) to solve for S1 in terms of Stot , we see that,
whenever Da0,

S1 ¼
r1Stot

D
: ð28Þ

We can then rewrite (16) to get

Ew 1þ
X

eðTÞ ¼ Ew

fT

 !
Stot

D

 !
¼ Ew;tot : ð29Þ

These L equations are well-defined whenever Da0. With multiple
components, Stot can be apportioned among the components and
each reference modform will have a corresponding equation to
(28).

Let F : RL
�R-RL be defined by the left-hand side of (29) so

that, for 1rwrL,

FwðE1; . . . ; EL; SÞ ¼ Ew 1þ
X

eðTÞ ¼ Ew

fT

 !
S

D

 !
:

Theorem 3. The steady states of a multisite PTM system are given by

the solutions of a system of L equations for the L free enzyme

concentrations. More precisely, if A; EARL, SAR, Dr1a0 and
Please cite this article as: Thomson, M., Gunawardena, J., The rati
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FðE; SÞ ¼ A, then there is a steady state of the system for which E

gives the free enzyme concentrations, S¼ Stot and Aw ¼ Ew;tot .
Conversely, any steady state of the system having these totals, for

which Dr1a0, arises in this way.

Proof. We have shown above that any steady state of the system
having the specified totals, for which Dr1a0, satisfies FðE; SÞ ¼ A.
Now suppose that EARL, SAR satisfy Dr1a0 and that FðE; SÞ ¼ A.
Define S�1AR so that

S�1 ¼
r1S

D

which we may do since Da0. Now use Theorem 2 to define a
steady state of the system, S�u, Y�v , which we may do since r1a0.
We need only check that the total amount of substrate, S�tot , and
enzymes, E�w;tot , satisfy S�tot ¼ S and E�w;tot ¼ Aw. The total amount of
substrate is

S�tot ¼
X

Su AsðTÞ
S�uþ

X
T ANet

X
Yv AgðTÞ

Y�v :

Since (26) and (21) are satisfied through the use of Theorem 2, this
gives

S�tot ¼D
S�1
r1

¼ S;

as required. Similarly, the total amount of enzyme Ew is

E�w;tot ¼ Ewþ
X

eðTÞ ¼ Ew

X
Yv AgðTÞ

Y�v

0
@

1
A¼ Ew 1þ

X
eðTÞ ¼ Ew

fT

 !
S�1
r1

 !

¼FwðE; SÞ ¼ Aw;

as required. &

Since Dr1AR½Enz� is S-positive, it never vanishes for positive
free enzyme concentrations, which corresponds to the biochemi-
cally realistic case.

3.6. Algebraic geometry of the steady state

As suggested in the Introduction, Theorem 2 should be seen as
an assertion that an appropriate algebraic variety is rationally
parameterisable. This implies that points on the variety can be
explicitly constructed as rational functions of some auxiliary
parameters, in contrast to the implicit definition of points as
solutions of polynomial equations (Cox et al., 1997). For instance,
x2þy2 ¼ 1 provides an implicit definition of the unit circle, while
the expression of x and y as

x¼
2t

t2þ1
; y¼

t2 � 1

t2þ1
ð30Þ

provides an explicit rational parameterisation. In general, a
rational parameterisation may be undefined at points where the
denominators of the rational functions vanish (which is not the
case for (30)) and not all points on the variety may be represented
(such as the point ð0;1Þ in (30)).

Recall from Section 3.1 that there are LþNþP dynamical
variables in our system. Let V DRLþNþP denote the steady-state
variety, corresponding to the simultaneous solutions of the
system equations (10)–(12). V is a real algebraic variety. Let p :
RLþNþP-RN denote the projection on to the space of modforms.
pðVÞ may lack some points required for it to be an algebraic
variety but it may be completed to one, if required (Cox et al.,
1997).

The set pðVÞ has additional structure, not present in V. Eq. (26)
gives the modforms only up to a constant. If lAR, then it is easy
to see from the system equations (10)–(12) that multiplying each
modform and each enzyme–substrate complex by l, changes all
the rates by l. In particular, if the system is at steady state, then it
onal parameterisation theorem for multisite post-translational
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is still at steady state after such a change. Hence, pðVÞ is a
projective set: given xApðVÞ the line through the origin and x also
lies in pðVÞ. We can therefore consider pðVÞ as a subset, pðVÞp, of
the real projective space RP

N�1. The following is a corollary of
Theorem 2.

Theorem 4. pðVÞp has a rational parameterisation. Specifically,
the rational functions ru in (24) define a surjective mapping

RL-pðVÞp, which is well-defined away from the hypersurface

r1 ¼ 0.

In view of (25), the dimension of pðVÞp, once completed to a
variety, is at most L� 1. For instance, in the case considered in
Manrai and Gunawardena (2008) and Thomson and Gunawardena
(2009), with a single kinase and a single phosphatase, pðVÞp is a
rational curve.
4. Discussion

Our results show that the exponentially large number of state
variables, LþNþP, of a multisite PTM system is determined at
steady state by a relatively small ‘‘core’’ of L variables. We have
provided in Propositions 1 and 2 a linear algebraic algorithm for
calculating all steady-state variables in terms of the core. Tools like
Mathematica can readily carry out linear algebra over symbolic
fields like RðQ Þ and an example of such a program is available as the
Supplementary Information to Manrai and Gunawardena (2008).

Previous steady-state analyses of multisite PTMs have largely
focussed on phosphorylation. They have either used approxima-
tions, such as Michaelis–Menten or linear kinetics (Goldbeter and
Koshland, 1981; Lisman, 1985; Markevich et al., 2004; Salazar and
Höfer, 2007), which ignore sequestration effects when enzymes
have multiple substrates (Ciliberto et al., 2007), or made
simplifying biological assumptions, such as small numbers of
sites (Manrai and Gunawardena, 2008) or sequential modification
(Gunawardena, 2005), which limits their applicability. The results
of the present paper provide a foundation for developing models
that are closer to biological reality while also extending the scope
of analysis to allow for multiple enzymes, multiple types of
modification and multiple substrates. The permitted biochemical
mechanisms are also considerably enlarged. Our method of proof
reveals the significance of the Matrix-Tree theorem, which seems
to play a key role in several forms of algebraic elimination in
biochemical networks (Craciun et al., 2009; King and Altman,
1956).

The present paper develops the methodology. Applications of
these results are found in previous papers which have focussed on
phosphorylation with a single kinase, single phosphatase and
single substrate (Manrai and Gunawardena, 2008; Thomson and
Gunawardena, 2009). The capability to treat the number, n, of
sites as a variable has allowed us to show that, for appropriate rate
constants, the number of stable phospho-form distributions can
be as many as bðnþ2Þ=2c, where bxc denotes the greatest integer
not greater than x (Thomson and Gunawardena, 2009). In
particular, the number of stable phospho-form distributions
increases with n. While some of these distributions are focussed
on a few phospho-forms, others are more diffuse. Since different
phospho-forms may have distinct biological effects (Park et al.,
2006; Pufall et al., 2005; Wu et al., 2004), the phospho-proteome
could be capable of substantial information processing. Indeed, it
has been suggested that the remarkable variety of PTMs found on
histone proteins in chromatin form a ‘‘code’’ for transcriptional
regulation (Jenuwein and Allis, 2001; Turner, 2002). The analysis
in Thomson and Gunawardena (2009) provides the first example
of a PTM mechanism which is capable of encoding arbitrary
Please cite this article as: Thomson, M., Gunawardena, J., The rati
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amounts of information and gives an estimate of its information
capacity.

A second application, for systems with two sites, has shown
that the steady-state geometry can distinguish between different
reaction networks (Manrai and Gunawardena, 2008). The geome-
try is detected algebraically through the use of ‘‘invariants’’, or
polynomial functions of the steady-state phospho-form concen-
trations which depend only on the rate constants (Gunawardena,
2007). Invariants take the same value no matter what amounts of
enzymes and substrates are present or what steady state is
formed. To exploit such results we have been developing, in
collaboration with Hanno Steen’s group at Children’s Hospital in
Boston, mass-spectrometric methods for accurately quantifying
phospho-form distributions. We are using this to map out, for the
first time, the steady-state geometry of a kinase, phosphatase,
substrate system: the MAP kinase Erk, which is doubly
phosphorylated by the MAP kinase Mek and dephosphorylated
by the dual-specificity phosphatase MKP3. Our experimental
studies have already shown that these proteins engage in a more
complex set of reactions than is commonly described in the
literature and we are developing the method of invariants as a tool
to work out the missing pieces.

Our results suggest several directions for future investigation.
Which biochemical reaction networks have ‘‘cores’’, or small subsets
of variables in terms of which all others can be calculated at steady
state? If a core exists, is it unique? How can cores be identified and
how can the functional relationship with non-core variables be
algorithmically determined? Do these functional relationships give
rational parameterisations of the steady-state variety? A particularly
interesting generalisation would be to allow substrates to also be
enzymes, thereby accommodating kinase cascades. The difficulty here
is that those substrates that are also enzymes can, presumably, no
longer be eliminated and must hence be in the ‘‘core’’, while, at the
same time, as substrates, these variables may have non-trivial
algebraic dependencies with other core variables. In the case treated
here, the variables in the core are independent: their values can be
arbitrarily assigned (Theorem 2). In more general cases there may be
additional algebraic constraints on the core variables. We believe that
the language and methods of algebraic geometry (Cox et al., 1997;
Manrai and Gunawardena, 2008) will be particularly useful for
unravelling such issues.

Looking further ahead, it is a tantalising question as to whether
the elimination procedures developed here can be extended from
the steady state to the dynamics, perhaps, initially, to the local
vicinity of the steady state. Since steady-state stability is
determined by the eigenvalues of the Jacobian, it does not seem
implausible that differential algebraic methods could encompass
both the steady state itself as well as its local vicinity. More
globally, multisite PTM systems have other attractors, such as
limit cycles, of which the cyanobacterial circadian oscillator is a
particularly significant example (Nakajima et al., 2005; Rust et al.,
2007). Hilbert’s sixteenth problem asks about the number of limit
cycles of two-dimensional polynomial dynamical systems. It
remains unsolved, although some lower bounds are known
(Christopher and Lloyd, 1995). Several lines of evidence, including
the work presented here, suggest that the polynomial dynamics
arising from biochemical reaction networks has very good
properties at steady state. Could the same be true for other
attractors like limit cycles?

Biologists are continually striving to elicit general principles
from experimental data. Mathematical methods have been
of less help in this respect than in accounting for the results of
individual experiments. The present paper provides the tools to
reason about post-translational modification systems with-
out having to fix in advance many of the individual details, such
as the number of enzymes or the combinatorics of modification.
onal parameterisation theorem for multisite post-translational
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Being able to rise above the molecular complexity while retaining
biological and biochemical realism provides a complementary
capability to that of simulation. If this capability can be extended
to a broad range of cellular processes, we will have a powerful tool
with which to articulate the principles of cellular information
processing.
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