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Introduction Results
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Drosophila embryos express Hb in a steep pattern in response to Bcd gradient.
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Energy expenditure could allow higher steepness to be accessed. (Estrada et al. 2016)
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Drosophila embryos divide very rapidly in the early divisions, and the available
time is insufficient for the observed steepness to develop based on current _ 1 1
equilibrium models. (Tran et al. 2018) / tmiX(E) < log ( )
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Upper bound to mixing time:
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Solution to equation (2) for one set of randomly chosen rates Using the second largest eigenvalue as a proxy for the time to steady

state would remove the need to use simulations and avoid the resulting

numerical inaccuracy, but the second largest eigenvalue only describes
an upper bound, and is not a good estimate of the actual time.

Most current models assume that gene regulation occurs at thermodynamic
equilibrium (no energy is spent at steady state). Examples of different patterns for time to steady state vs.

= Does spending energy hasten the time it takes for the transcription factor (TF) thermodynamic driving force (DF)
binding to reach a steady state, allowing a steep reproducible pattern to emerge?

DF=1.7

More generally, how does energy expenditure affect the transient dynamics of TF

binding?

Model _ : SN \7

x = [TF]

When the product of the rates in one
direction is equal to the other, i.e.,
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(cycle condition), then the system is at
thermodynamic equilibrium.
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there are different patterns depending on the individual rates for each graph.
Further directions to explore include: References

d_u = L£(G) - u(t) (1) = using more concrete measures of distance from equilibrium such as internal entropy production

Compute eigenvalues and eigenvectors of graph Laplacian matrix to get the
solution to the master equation.
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