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1 Introduction

Matrices, which represent linear transformations, also arise in the study of nonlinear differential
equations. Suppose that we have an n-dimensional system of nonlinear differential equations

dx

dt
= f(x) , (1)

where x = (x1, · · · , xn) is an n-dimensional vector and f(x) = (f1(x), · · · , fn(x)) is an n-dimensional
function of x. If xst is a steady state of the system, so that f(xst) = 0, then the dynamical behaviour
of (1) can, under the right condition, be approximated in the immediate vicinity of xst by the linear
system of differential equations

dy

dt
= Df(xst)y (2)

where y = x− xst and Df(x) is the n× n Jacobian matrix of f ,

Df(x) =


∂f1

∂x1
· · · ∂f1

∂xn
...

...
...

∂fn

∂x1
· · · ∂fn

∂xn

 .

This approximation is known as the Hartman-Grobman Theorem. The “right condition” is that the
steady state xst is hyperbolic, which means that none of the eigevalues of Df(xst) have zero real part.
For a 1-dimensional nonlinear dynamical system, non-hyperbolicity corresponds to (df/dx)|x=xst =
0, a situation in which the behaviour in the vicinity of xst cannot be determined without examining
higher derivatives of f . It is also true that the eigenvalues of Df(xst) can tell us about the stability
or instability of the steady state xst: if all the eigenvalues of Df(xst) have negative real part then
xst is stable; if at least one of the eigenvalues has positive real part then xst is unstable. We are not
going to prove either of these claims here but they give us the motivation to try and understand the
behaviour of linear systems of differential equations like (2). This will need much of what we have
learned in Parts I and II.

There is one result about systems of nonlinear differential equations like (1) which is helpful to keep
in mind. It was first proved by the French mathematician Emil Pickard around 1890. Provided
the function f is well-behaved—in practice the functions that we normally encounter in modelling
biological systems are “well-behaved”—then a solution to (1) always exists and is unique. More
precisely, if a = (a1, · · · , an) is any n-dimensional vector that describes an initial condition at
some time t = t0, then there exists an n-dimensional function φ(t) of one (time) variable, which
is differentiable as a function of t, which satisfies the initial condition at t = t0 and satisfies the
differential equation in some interval around t = t0:

φ(t0) = a
dφ(t)/dt = f(φ(t)) for t0 − h < t < t0 + h .

(3)

Just because a solution exists does not mean that we can always write it down in terms of more
familiar functions, like exp, sin or cosh. Another way to think about Pickard’s existence theorem
is that it provides a way of constructing new functions as solutions to an appropriate differential
equation. We will see this at work in the next section.

Not only do solutions of (1) exist, they are also unique. Suppose that θ(t) is another n-dimensional
function of one (time) variable, which also satisfies (3). Then, φ(t) = θ(t) in some interval around
t = 0. This will come in useful below.
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2 Solving a linear differential equation in 1 dimension

In Part I we exploited the idea that matrices were like numbers and that some things that are easy to
do with numbers, like solving the equation ax = b to get x = a−1b, can also be done with matrices.
We are going to use the same idea here to solve a linear system of differential equations. First, we
have to remember how to do this for numbers.

You should know that the 1-dimensional linear differential equation, dx/dt = ax, is solved by the
exponential function x(t) = exp(at)v, where v is the initial condition, or value of x at time 0. But
what is the definition of the exponential function? It is instructive to try and work out what exp(at)
must be in order for it to satisfy the differential equation dx/dt = ax.

We need to find a function x(t) with the property that when it is differentiated it gives a times itself.
We could try to build this up using simple functions that are easy to differentiate, like tn, whose
derivative is ntn−1. We might start with something like x1(t) = at. If we differentiate this we get a,
which is not ax1 but is a.1. So perhaps we should start instead with x0(t) = 1 and x1(t) = x0(t)+at.
If we do that then dx1/dt = ax0, which is not quite what we want because it has different x’s on
either side of the equation. However, it is a start and it seems to be going in the right direction, so
perhaps it may lead us somewhere. Can we find x2(t), such that dx2/dt = ax1 = a+a2t? We might
try x2(t) = 1 + at + a2t2 but this does not quite work because d(a2t2)/dt = 2a2t and what we really
want is a2t. So instead, let us try

x2(t) = 1 + at +
1
2
(at)2

from which it is easy to see that, indeed, dx2/dt = ax1. We can now try and keep going and find
x3(t) such that

dx3/dt = ax2 = a + a2t +
1
2
a3t2 .

Let us do this by adding to x2(t) the term u(t) = c(at)3, where we choose the constant c so that

du

dt
= 3ca(at)2 =

1
2
a3t2 .

We see that c = 1/2.3. It is not difficult to extrapolate from this. If we define xk(t) so that

xk(t) = 1 + at +
(at)2

2
+

(at)3

2.3
+

(at)4

2.3.4
+ · · ·+ (at)k

2.3. · · · .(k − 1).k
(4)

then it is not hard to check that dxk/dt = axk−1.

The appearance of the product of successive integers in this formula leads to the definition of k
factorial, denoted k!, which is the product of the first k integers, k! = 2.3. · · · .(k − 1).k. We can
rewrite (4) more succinctly as

xk(t) =
k∑

i=0

(at)i

i!
.

Does this get any closer to a solution of dx/dt = ax? We seem to have merely generated an infinite
sequence of solutions, none of which are quite right. However, suppose we could “let k go to infinity”
and use an infinite number of terms in the sum, so that we could write

x(t) = 1 + at +
(at)2

2
+

(at)3

2.3
+ · · ·+ (at)k

2.3. · · · .(k − 1).k
+ ... (5)

and suppose that we can differentiate this just as we did before, on a term by term basis. It is then
easy to see by differentiating each term in (5) and adding them up that

dx(t)
dt

= 0 + a + a2t +
a3t2

2
+ · · ·+ aktk−1

2.3. · · · .(k − 1)
+ · · · = ax(t) .
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So we have found a solution to dx/dt = ax provided that we can add up an infinite number of terms.
In this case we can but we cannot always do it. We will discuss when you can and cannot in the
next section. Although the Pickard existence theorem only guarantees the existence of a solution
locally (meaning in some neighbourhood of the initial condition), (5) works globally for all values of
t.

We can summarise what we have worked out in the following definition of the exponential function
(taking t = 1 in (5)):

exp(a) =
∞∑

i=0

ai

i!
. (6)

We should now be able to prove some of the properties of the exponential function. One of the
simplest is that exp(0) = 1. This follows immediately from (6). A more interesting property is the
addition formula for exponentials,

exp(a + b) = exp(a) exp(b) , (7)

which really characterises what it means to be “exponential”. To prove this, let us consider
exp(at) exp(bt) as a function of t. What differential equation does this function satisfy? If we
use the rule for differentiating a product of two functions, we find that

d

dt
(exp(at) exp(bt)) =

(
d

dt
exp(at)

)
exp(bt) + exp(at)

(
d

dt
exp(bt)

)
.

Since, exp(at) satisfies dx/dt = ax, we can simplify this to

a exp(at) exp(bt) + exp(at)b exp(bt) = (a + b) exp(at) exp(bt) .

In other words, exp(at) exp(bt) satisfies the differential equation dx/dt = (a + b)x and, furthermore,
exp(a0) exp(b0) = 1. Since we already know that exp((a + b)t) is a solution of this differential
equation which satisfies the same initial condition, we can conclude from the uniqueness of solutions
to differential equations that

exp((a + b)t) = exp(at) exp(bt) .

Taking t = 1, we recover (7). We really have defined the exponential function!

3 Convergence and divergence

Adding up infinitely many terms is a very useful technique in mathematics and lets you construct
things that would be hard to do otherwise. However, you have to be very careful about it. You
already have some familiarity with infinite sums from ordinary arithmetic. The decimal expansion
of 1/3 is the “recurring” decimal 0.3333 · · · , which actually means

3
10

+
3

102
+ · · ·+ 3

10k
+ · · · . (8)

How do we add this up? We can easily rewrite it as

3
10

(
1 +

1
10

+
1

102
+ · · ·+ 1

10k
+ · · ·

)
,

in which the infinite sum within the brackets is a geometric progression. You should remember how
to add this up but let us recall it anyway. For any a,

1 + a + a2 + · · ·+ ak =
1− ak+1

1− a
.
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(This is easy to confirm by multiplying across by (1 − a).) If 0 < a < 1 (for instance, a = 3/10)
then powers of a like ak+1 become smaller and smaller as k gets larger. Hence, for very large values
of k, we can ignore the contribution from ak+1. In the limit as k gets very large, as we add up an
infinite number of terms, we should find that

1 + a + a2 + · · ·+ ak + · · · = 1
1− a

. (9)

When 0 < a < 1, we say that the sum converges. What happens if 1 < a? In this case, the powers
of a like ak+1 get larger and larger as k increases (take a = 2, for instance) and it clear that the sum
will eventually become larger than any number we can think of. In this case, the sum diverges. We
cannot assign any consistent mathematical meaning to the sum of infinitely many terms when the
sum diverges.

For the recurring decimal a = 3/10 < 1, so we can use (9) to see that (8) is

3
10

(
1

1− 1/10

)
=

1
3

as expected.

You might think from this example that convergence and divergence are easy to tell apart. For the
geometric progression, each term in the sum either gets smaller and smaller and the sum converges,
or gets larger and larger and the sum diverges. However, it is more subtle than that. Consider the
following infinite sum

1 +
1
2

+
1
3

+ · · ·+ 1
k

+ · · · . (10)

Each successive term is smaller than the preceding. However, let us group the sum as follows:

1 +
1
2︸︷︷︸
≥1/2

+
1
3

+
1
4︸ ︷︷ ︸

≥2(1/4)=1/2

+
1
5

+
1
6

+
1
7

+
1
8︸ ︷︷ ︸

≥4(1/8)=1/2

+
1
9

+
1
10

+
1
11

+
1
12

+
1
13

+
1
14

+
1
15

+
1
16︸ ︷︷ ︸

≥8(1/16)=1/2

+ · · · .

Each term in a group is larger than the last term, which is 1/2k for some k. There are 2k−1 terms in
that group. Hence, the sum of the terms in each group is always at least 1/2. By taking sufficiently
many groups, the sum can be made as large as we please. We see that the series (10) does not
converge. In general, successive terms of a series have to decrease sufficiently fast for the series to
converge.

Back in the seventeenth and eigteenth centuries, as the calculus was being developed, mathematicians
got themselves very confused about when infinite sums converged and when they did not. When
some of d’Alembert’s students complained to him that they were going round in circles trying
to understand this, he is reported to have said, “Go on, my sons, and faith will come to you!”.
(Daughters were otherwise occupied in those days.) A little later in the early nineteenth century
Cauchy, Weierstrass and others found out how to do it without requiring religious guidance.

We will avoid these issues here. For the exponential function, the numerators in each term, (at)k,
can increase very quickly with k but the denominators, k!, increase even faster, as you will see if you
calculate a few of them. The ratio, (at)k/k!, decreases fast enough that (5) always converges. From
now on, we will assume that we can operate on the infinite series (5) as if it were a finite sum. That
works for (5) but it is important to keep in mind that it does not always work.

4 Defining the matrix exponential

Now consider the linear system of differential equations

dx

dt
= Ax (11)
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where x is an n-dimensional vector and A is an n × n matrix. We are going to follow the analogy
between matrices and numbers and try the same formula as in (6) to define the matrix exponential,
exp(A):

exp(A) = I + A +
A2

2!
+

A3

3!
+ · · · =

∞∑
i=0

Ai

i!
. (12)

This infinite sum turns out to converge for much the same reasons that (5) converges. We are going
to assume that fact here and take it for granted that we can operate with (12) as we would with a
finite sum.

With this definition, I claim that it is easy to check that x(t) = exp(At) satisfies (11). Note first that
At (or tA) is a shorthand for the matrix in which each entry in A is multiplied by t. Another way
of writing this is A.(tI) (or (tI).A), where tI is the identify matrix multiplied by t or, equivalently,
the matrix with entry t on the main diagonal and 0 elsewhere. Since the identity matrix commutes
with every matrix, it is easy to see that

(At)k = A(tI) · · ·︸︷︷︸
k

A(tI) = A · · ·︸︷︷︸
k

A(tI) · · ·︸︷︷︸
k

(tI) = Aktk .

Hence,

exp(At) =
∞∑

i=0

Ai t
i

i!
. (13)

Furthermore, differentiating a matrix-valued function, just like a vector-valued function, just means
differentiating each entry of the matrix individually. It should now be easy to see that if we dif-
ferentiate the matrix function exp(At) with respect to t we get, for exactly the same reasons as
before, A. exp(At). The matrix terms Ai in (13) are just constants, so the calculation of derivatives
works exactly as it did previously for numbers. To relate these n × n matrices back to the linear
system (11) we need to take into account the initial condition at time t = 0, which is given by some
n-dimensional vector v. Let x(t) = exp(At).v. This is now an n-dimensional vector. It is easy to
see that x(t) is a solution of dx/dt = Ax and that, because exp(0) = I, x(0) = v. Hence, we have
found the (unique) solution to the system of linear differential equations (11).

Note that when n = 1, the definition of the matrix exponential reverts to the usual definition of the
exponential for numbers. Does the matrix exponential satisfy the same properties as the number
exponential? We know that exp(0) = I. Let us try to prove the addition formula as we did before.
Consider the matrix function exp(At) exp(Bt). What differential equation does this satisfy? It is not
immediately obvious that we can use the usual formula for differentiating a product of two functions,
when the functions are matrix valued. However, we can and it is a nice exercise to convince yourself
that this is true. Accordingly, we find that,

d

dt
(exp(At) exp(Bt)) =

(
d

dt
exp(At)

)
exp(Bt) + exp(At)

(
d

dt
exp(Bt)

)
.

Since d(exp(At)/dt = A exp(At), we can simplify this to

A exp(At) exp(Bt) + exp(At)B exp(Bt) . (14)

So far, the argument is identical to the one given above but at this point we have to use the
commutativity of multiplication to rewrite the second term. We cannot do this in general for
matrices. However, suppose that A commutes with B, so that AB = BA. In that case it is easy to
check that B commutes with all powers of At, so that (At)kB = B(At)k. It follows from (12) that
B must then commute with exp(A). Hence, when A and B commute, we can rewrite the second
term in (14) to get

A exp(At) exp(Bt) + B exp(At) exp(Bt) = (A + B) exp(At) exp(Bt) .
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It follows, as before, from the uniqueness of solutions to differential equations, that

exp(A + B) = exp(A) exp(B) if AB = BA . (15)

The analogy between numbers and matrices only works up to a point, as we have already seen a few
times. You will get some very strange results if you forget that A and B need to commute before
you can use the addition formula!

5 Calculating the matrix exponential

If you take a general 2 × 2 matrix A and try working out its matrix exponential using (12), you
will quickly come to the conclusion that you do not want to do it that way! The matrix powers
Ai that enter into (12) become complicated functions of the entries of A and it is not easy to see
how to relate them to anything more familiar. Except in special cases, like when A is a diagonal or
triangular matrix—see below, (12) is not a good way to calculate exp(A).

We learned in Part II that we can use a change of basis to transform A into a simpler form. If T is
the change of basis matrix, then A is transformed into TAT−1. How does this affect exp(A)? It is
easy to see that, because T−1T = I,

TA2T−1 = TAAT−1 = TA(T−1T )AT−1 = (TAT−1)(TAT−1) = (TAT−1)2 ,

and using the same reasoning we can conclude that

TAiT−1 = (TAT−1)i ,

for any integer i > 0. It is now easy to see that

T exp(A)T−1 = T

( ∞∑
i=0

Ai

i!

)
T−1 =

∞∑
i=0

TAiT−1

i!
=

∞∑
i=0

(TAT−1)i

i!
= exp(TAT−1) ,

Transforming A by a change of basis results in precisely the same transformation being applied to
exp(A). This provides us with a systematic method for calculating exp(A). We use a change of basis
to transform A into a simpler form, calculate the exponential of the simpler form and then use the
reverse transformation to return to the original basis:

exp(A) = T−1 exp(TAT−1)T . (16)

In Part II we learned that any 2 × 2 matrix can be transformed by a change of basis into one of
three classes, depending on whether the characteristic equation has two complex conjugate roots
(class I), two real roots with two distinct eigenvectors (class II) or two equal real roots with only
one eigenvector (class III). Let us look at each of these in turn in increasing order of difficulty.

Class II A 2× 2 matrix with 2 distinct eigenvectors can always be diagonalised (see Part II). The
powers of a diagonal matrix are easy to work out. The entries on the diagonal are simply raised to
the same power: (

a 0
0 b

)k

=
(

ak 0
0 bk

)
.

It should then be easy to see from (12) that

exp
(

a 0
0 b

)
=
(

exp(a) 0
0 exp(b)

)
(17)

In fact, this works for any n. Diagonal matrices are easy and, consequently, it is easy to compute
exp(A) for any matrix A which can be diagonalised.
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Class III A 2× 2 matrix with two equal real roots but only one eigenvector cannot be diagonalised
but it can be transformed into an upper triangular matrix (see Part II). We can always write an
upper triangular matrix as the sum of a diagonal matrix and whatever is left over(

a b
0 a

)
=
(

a 0
0 a

)
+
(

0 b
0 0

)
.

Because the eigenvalues of the matrix are assumed to be equal, the diagonal matrix is just a scalar
times the identity matrix. That is very convenient because the identity matrix commutes with any
matrix. (It is not true that an arbitrary diagonal matrix commutes with any matrix. The entries
on the diagonal need to be the same.) In this case, we can legitimately use (15) to get

exp
(

a b
0 a

)
= exp

(
a 0
0 a

)
exp

(
0 b
0 0

)
. (18)

We already know how to work out the first factor, as it is the exponential of a diagonal matrix. As
for the second, it is easy to check that (

0 b
0 0

)2

= 0 .

Matrices for which some power is 0 are called nilpotent. If you take away the diagonal terms from
any triangular matrix (upper or lower) then what is left is always nilpotent (why?). The exponential
of a nilpotent matrix can often be calculated directly from the definition (12) because the infinite
series gets truncated to only a finite number of terms. In this case it is particularly easy:

exp
(

0 b
0 0

)
= I +

(
0 b
0 0

)
=
(

1 b
0 1

)
.

Substituting into (18), we find that

exp
(

a b
0 a

)
=
(

exp(a) 0
0 exp(a)

)(
1 b
0 1

)
=
(

exp(a) b exp(a)
0 exp(a)

)
. (19)

Notice the appearance of an algebraic, rather than an exponential, function of b in one of the terms.
This is a small but important difference between the matrix exponential of Class II and Class III
matrices.

Class I A matrix in Class I has two complex conjugate eigenvalues and can always be transformed
by a change of basis to

A =
(

a −b
b a

)
.

If you do not already know it, you should quickly check that the eigenvalues of this matrix are
just a ± ib. Matrices of this form are in 1-to-1 correspondence with complex numbers of the form
z = a + ib and we showed in Part I that this correspondence is an isomorphism: it preserves the
algebraic operations of addition and multiplication. Now just imagine that we take the definition of
the matrix exponential (12) and apply the one-to-one correspondence to each term, using the fact
that the correspondence preserves the algebraic operations. It is easy to see that we would get

1 + z +
z2

2!
+

z3

3!
+ · · · =

∞∑
i=0

zi

i!
.

This is precisely the definition of the exponential for complex numbers, exp(z). By now you should
be accustomed to the idea that we can define an exponential in this way and that the function
exp(zt) will be the solution to the complex differential equation dx/dt = zx, where x(t) is now a
complex-valued function of time. Moreover, just as we did above, we can show that the complex
exponential satisfies the usual addition formula. Because multiplication of complex numbers, unlike
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matrices, is always commutative, exp(w + z) = exp(w) exp(z), where w and z are arbitray complex
numbers.

We see from this that exp(A) is the matrix corresponding to the complex number exp(z). What is
that complex number? We need to rewrite it in terms of a and b. Applying the addition formula we
see that

exp(z) = exp(a + ib) = exp(a) exp(ib) . (20)

We can now use one of the most famous formulas in mathematics, which relates i, e and π:

exp(ib) = cos(b) + i sin(b) .

You should have seen this before. If you have not then you need to brush up your trigonometry. We
are going to assume it here. Substituting back in (20) and converting back into a matrix, we find
that

exp(A) = exp(a)
(

cos(b) − sin(b)
sin(b) cos(b)

)
. (21)

We have now worked out how to calculate the exponential for any 2 × 2 matrix (up to a transfor-
mation).
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