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H I G H L I G H T S
c Invariants are polynomial expressions that vanish in any steady state of a network.
c They characterise networks arising in various biological contexts.
c We introduce an efficient linear method for calculating certain types of invariants.
c This exploits Chemical Reaction Network Theory for networks of arbitrary deficiency.
c The new method reveals robustness in complex bifunctional enzymes.
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The nonlinearities found in molecular networks usually prevent mathematical analysis of network

behaviour, which has largely been studied by numerical simulation. This can lead to difficult problems

of parameter determination. However, molecular networks give rise, through mass-action kinetics, to

polynomial dynamical systems, whose steady states are zeros of a set of polynomial equations. These

equations may be analysed by algebraic methods, in which parameters are treated as symbolic

expressions whose numerical values do not have to be known in advance. For instance, an ‘‘invariant’’

of a network is a polynomial expression on selected state variables that vanishes in any steady state.

Invariants have been found that encode key network properties and that discriminate between

different network structures. Although invariants may be calculated by computational algebraic

methods, such as Gröbner bases, these become computationally infeasible for biologically realistic

networks. Here, we exploit Chemical Reaction Network Theory (CRNT) to develop an efficient

procedure for calculating invariants that are linear combinations of ‘‘complexes’’, or the monomials

coming from mass action. We show how this procedure can be used in proving earlier results of Horn

and Jackson and of Shinar and Feinberg for networks of deficiency at most one. We then apply our

method to enzyme bifunctionality, including the bacterial EnvZ/OmpR osmolarity regulator and the

mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase glycolytic regulator, whose net-

works have deficiencies up to four. We show that bifunctionality leads to different forms of

concentration control that are robust to changes in initial conditions or total amounts. Finally, we

outline a systematic procedure for using complex-linear invariants to analyse molecular networks of

any deficiency.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A molecular interaction network within a cell may be decom-
posed into elementary biochemical reactions, such as

2S1þ3S2-4S3, ð1Þ
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where the Si are distinct chemical species. (This stoichiometry is
unlikely but helpful for illustrative purposes.) Under mass-action
kinetics, the rate of such a reaction is proportional to the
concentrations of the substrates, taking stoichiometry into
account. Hence,

dx3

dt
¼ 4k1x2

1x3
2, ð2Þ

where xi is the concentration of species Si, xi ¼ ½Si�, and k1AR>0 is
the positive mass-action rate constant. In a biochemical network,
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reactions contribute production and consumption terms consist-
ing of monomials like 4k1x2

1x3
2 to the rates of formation of the

species in the network. This results in a system of ordinary
differential equations (ODEs), dx=dt¼ f ðx;kÞ, in which each com-
ponent rate function f iðx;kÞ is a polynomial in the state variables
x1,x2, . . . ,xnAR and k1, . . . ,kpAR>0 are positive rate constants.

The nonlinearities in (2) usually preclude mathematical ana-
lysis of the dynamical behaviour of such ODE systems, which are
customarily studied by numerical simulation. This requires that
the rate constants be given numerical values, which in most cases
are neither known nor readily measurable. The resulting ‘‘para-
meter problem’’ remains a major difficulty in exploiting mathe-
matical models (Gunawardena, 2010). However, the steady states
of such ODEs are zeros of a set of polynomial equations,
f 1ðx,kÞ ¼ 0, . . . ,f nðx,kÞ ¼ 0. Computational algebra and algebraic
geometry provide powerful tools for studying these solutions
(Cox et al., 1997), and these have recently been used to gain new
biological insights (Craciun et al., 2009; Dasgupta et al., submitted
for publication; Manrai and Gunawardena, 2008; Pérez Millán
et al., 2012; Thomson and Gunawardena, 2009a,b). The rate
constants can now be treated as symbolic parameters, whose
numerical values do not need to be known in advance. The
capability to rise above the parameter problem allows more
general results to be obtained than can be expected from
numerical simulation (Thomson and Gunawardena, 2009b).

The focus on steady states, rather than transient dynamics, is still
of substantial interest. For instance, in time-scale separation, which
has been a widespread method of simplification in biochemistry and
molecular biology, a fast sub-system is assumed to be at steady state
with respect to a slower environment and steady-state analysis is
used to eliminate the internal complexity in the sub-system
(Gunawardena, 2012). Approximate or quasi-steady states have also
been shown to exist under various cellular conditions and can now
be engineered in vivo (Laurent and Kellershohn, 1999; Kramer et al.,
2004). Finally, steady states provide the skeleton around which the
transient dynamics unfolds, so knowledge of the former can be
helpful for understanding the latter.

The present paper focusses on the algebraic concept of an
‘‘invariant’’: a polynomial expression on selected state variables that
is zero in any steady state, with the coefficients of the expression
being rational expressions in the symbolic rate constants (Manrai
and Gunawardena, 2008). Recall that a rational expression is a
quotient of two polynomials; an example of such being the classical
Michaelis–Menten constant of an enzyme (Cornish-Bowden, 1995).
(A more general definition of an invariant allows the coefficients to
include conserved quantities (Xu and Gunawardena, submitted for
publication), but this extension is not discussed here.) Since each of
the rate functions, f iðx;kÞ, is zero in any steady state, the force of the
definition comes from the restriction to ‘‘selected state variables’’. It
is possible that, by performing appropriate algebraic operations on
f 1, . . . ,f n, non-selected variables can be eliminated, leaving a poly-
nomial expression on only the selected variables that must be zero
in any steady state.

Invariants turn out to be surprisingly useful. They have been
shown to characterise the biochemical networks underlying mul-
tisite protein phosphorylation (Manrai and Gunawardena, 2008),
suggesting that different network architectures can be identified
through experimental measurements at steady state. If an invar-
iant has only a single selected variable that appears linearly, this
variable has the same value in any steady state since it is
determined solely by the rate constants. In particular, its value is
unaffected by changes to the initial conditions or to the total
amounts of any species. This is ‘‘absolute concentration robust-
ness’’ (ACR), as introduced in Shinar and Feinberg (2010), which
accounts for experimental findings in some bacterial bifunctional
enzymes (Batchelor and Goulian, 2003; Shinar et al., 2007, 2009).
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
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The mammalian bifunctional enzyme, 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which has a more
complex enzymatic network, also yields invariants, with implica-
tions for regulation of glycolysis (Dasgupta et al., submitted for
publication). The methods developed here provide a systematic
way to analyse such bifunctional enzymes, as explained below.

Computational algebra exploits the method of Gröbner bases
to provide an Elimination Theorem (Cox et al., 1997), that permits
variables to be systematically eliminated among the rate equa-
tions, f 1, . . . ,f n (Manrai and Gunawardena, 2008). Algorithms for
calculating Gröbner bases are available in general-purpose tools
like Mathematica, Matlab and Maple and in specialised mathe-
matical packages such as Singular and Macaulay2.2 However,
these algorithms are computationally expensive for the task at
hand. They have been developed for general sets of polynomials
and have not been optimised for those coming from biochemical
networks. For instance, Mathematica’s Gröbner basis algorithm
does not terminate on the network for PFK-2/FBPase-2. If invar-
iants are to be exploited further, alternative approaches are
needed.

The nonlinearity in mass action comes from the pattern of
substrate stoichiometry in (1), which gives rise to the monomial
nonlinearity in (2). In the language of Chemical Reaction Network
Theory (CRNT), the patterns of stoichiometry that appear on
either side of a reaction arrow are called ‘‘complexes’’ (Feinberg,
1979; Gunawardena, 2003). Reaction (1) has three species, S1, S2

and S3 and two complexes, 2S1þ3S2 and 4S3. If C ¼ e1S1þ � � � þ

enSn, where eiAZZ0 are nonnegative integer stoichiometries,
then the complex C gives the monomial, xC, where xC ¼ xe1

1 � � � x
en
n .

Aside from this nonlinearity, the defining rate equations come
from linear processes on complexes. This observation is the starting
point of CRNT and reveals that biochemical networks conceal much
linearity behind their nonlinearity (Feinberg, 1979; Gunawardena,
2003, and see below). This suggests the possibility of using fast
linear methods, in preference to slow polynomial algorithms, to
construct a subset of invariants: those that are symbolic linear
combinations of the complex monomials, xC. As before, this defini-
tion acquires substance by restricting the complexes that can
appear. If C1, . . . ,Ck are the selected complexes, then a complex-
linear invariant is a polynomial expression of the form
a1xC1þ � � � þakxCk , that is zero in any steady state, where a1, . . . ,ak

may be rational expressions in the symbolic rate constants.
In this paper, we examine a large class of complex-linear

invariants that we call ‘‘type 1’’. We determine the dimension of
the space of type 1 invariants (Proposition 1) and provide a linear
algorithm for calculating them (Theorem 1). We point out how
invariants can be used in proving previous results of Horn and
Jackson (1972), and the Shinar–Feinberg Theorem for ACR (Shinar
and Feinberg, 2010). We then apply the method to contrast two
examples of enzymatic bifunctionality, the bacterial EnvZ/OmpR
osmolarity regulator and the mammalian PFK-2/FBPase-2 glycolytic
regulator. The method is sufficiently straightforward that the invar-
iants for networks of this kind can be found by manual inspection of
an appropriate matrix. Finally, we outline a systematic procedure for
analysing any network using type 1 complex-linear invariants.
2. Results

2.1. Background on CRNT

It is assumed that there are n species, S ¼ fS1, . . . ,Sng, whose
concentrations are x1, . . . ,xnAR, respectively, and m complexes,
of biochemical networks. J. Theor. Biol. (2012), http://dx.doi.org/
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Fig. 1. Schematic illustration of the dual procedure for calculating type 1 complex-

linear invariants using (6). The fundamental decomposition of CRNT is shown in the

commutative diagram in the top left corner, for which f ðxÞ ¼ Y � LðGÞ �CðxÞ. The

matrix M corresponds to the linear part of this decomposition, M¼ Y � LðGÞ. The

matrix B has columns consisting of a basis for ker M. The matrix B0 consists of the first

k rows of B. Assuming that rkB0 ¼ l, elementary column operations can be applied to B

to bring it into lower-triangular block form. By a mild abuse of notation, the upper-

left block continues to be called B0 . Finally, a subset, U, of linearly independent rows

(magenta) of B0 yields the nonsingular matrix B0U , while the subset V of remaining

rows (green) yields the matrix B0V , from which type 1 complex-linear invariants can

be calculated using (6). For interpretation of the references to color in this figures

caption, the reader is referred to the web version of this article.
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C¼ fC1, . . . ,Cmg. Complexes are regarded formally as multisets of
species, CiANS , where the value of the multiset, Ci, on the species
Sj, denoted CiðSjÞ is the stoichiometry of Sj in Ci. Accordingly,
Ci ¼ CiðS1ÞS1þ � � � þCiðSnÞSn. The reactions in the network define a
directed graph on the complexes, with an edge Ci-Cj whenever
there is a reaction with substrate stoichiometry given by Ci and
product stoichiometry given by Cj. The corresponding mass-action
rate constant gives each edge a label, ki,j, treated as a positive
symbol, ki,jAR>0.

Any directed graph, G, with labels in R>0 gives rise to an
abstract dynamics in which each edge is treated as if it were a
first-order chemical reaction with its label as rate constant. Since
the rates are all first-order, the dynamics are linear and may
therefore be written in matrix terms as dy=dt¼LðGÞ � y, where
yARm is a column vector, consisting of an abstract concentration
yi at each node i of G, and LðGÞ is a m�m matrix called the
Laplacian matrix of G. Here, ‘‘ � ’’ signifies matrix multiplication,
regarding vectors as matrices of one row or one column. The graph
Laplacian has wide application in biology, as described in
Gunawardena (2012), where additional information may be found.

In CRNT, the Laplacian, LðGÞ : Rm-Rm, provides a linear
analogue for complexes of the nonlinear function, f : Rn-Rn,
for species, in the following sense. Let C : Rn-Rm be the non-
linear function that lists the monomials for each complex,
CðxÞ ¼ ðxC1 , . . . ,xCm Þ

y. Here, y denotes transpose. Let Y : Rm-Rn

be the linear function that associates to each complex, considered
as a basis element of Rm, its corresponding stoichiometry pattern;
the i-th column of the resulting matrix is then ðCiðS1Þ, . . . ,CiðSnÞÞ

y.
With these definitions, it may be checked that f ðxÞ ¼ Y� LðGÞ �CðxÞ,
for any xARn, as depicted in the commutative diagram in the top
left of Fig. 1.

This fundamental decomposition is due to Horn and Jackson
(1972), and is the starting point of CRNT. They did not use the
Laplacian description, which was introduced in Craciun et al.
(2009) and exploited further in Gunawardena (2012) and
Thomson and Gunawardena (2009a). To analyse steady states,
where f(x)¼0, it is particularly useful to know the kernel of
LðGÞ : ker LðGÞ ¼ fyARm9LðGÞ � y¼ 0g. This was first determined
by Feinberg and Horn (1977, Appendix), by a non-constructive
method. Here, we briefly describe the constructive method
introduced in Gunawardena (2012), which shows how ker LðGÞ
can be algorithmically calculated from G.

This can be done in two stages (Gunawardena, 2012). First, if G

is ‘‘strongly connected’’, so that any two distinct nodes are linked
by a contiguous series of edges in the same direction, then
dim ker LðGÞ ¼ 1. The Matrix-Tree Theorem provides an explicit
construction of a basis element, rGARm, in terms of the spanning
trees of G : ker LðGÞ ¼/rGS. The components ðrGÞi are polyno-
mials in the symbolic labels but the details of their calculation are
not needed here. If G is not strongly connected, it can be
partitioned into its maximal strongly connected sub-graphs, or
‘‘strongly connected components’’ (SCCs). These inherit from G a
directed graph structure, G, in which there is an edge in G from
SCC Gu to SCC Gv whenever there is an edge in G from some node
in Gu to some node in Gv. G cannot have any directed cycles and so
always has terminal SCCs, with no edges leaving them. Let these
be G1, . . . ,GT . For each 1rtrT , let rt ARm be the vector which,
for vertices of G that lie in Gt, agrees with the vector rGt

, coming
from the Matrix-Tree Theorem applied to Gt as an isolated graph,
and, for all other vertices, j, ðrtÞj ¼ 0. Then, the rt forms a basis for
ker LðGÞ:

ker LðGÞ ¼/r1, . . . ,rTS: ð3Þ

This gives algebraic expressions for the components of the basis
vectors as polynomials in the symbolic labels. Note that rt may be
very sparse, being non-zero only for vertices in the single SCC Gt.
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
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2.2. Generating complex-linear invariants

Depending on the application, invariants may be required that
involve only certain complexes, Ci1 , . . . ,Cik , for instance, those
involving species with more easily measurable concentrations.
Since the indices can be permuted so that the complexes of
interest appear first in the ordering, it can be assumed that
invariants are sought on C1, . . . ,Ck. Let M be the n�m matrix
representing the linear part of the CRNT decomposition,
M¼ Y � LðGÞ. A simple way to construct a complex-linear invariant
on C1, . . . ,Ck is to find a vector, ayARk, such that, if ða,0ÞyARm is a

extended with m�k zeros, ða,0Þ ¼ ða1, . . . ,ak,0, . . . ,0Þ, then (a,0) is
in the rowspan of M. That is, it is a linear combination of the rows
of M. If xARn is any steady state of the system, so that f(x)¼0,
then CðxÞAker M because M �CðxÞ ¼ Y � LðGÞ �CðxÞ ¼ f ðxÞ ¼ 0.
Since (a,0) is in the rowspan of M, ða,0Þ �CðxÞ ¼ 0. Hence, by
definition of C, a1xC1þ � � � þakxCk ¼ 0, giving a complex-linear
invariant on C1, . . . ,Ck.

Not all such invariants may arise in this way. For that to happen, it
is necessary not just for ða,0Þ �CðxÞ ¼ 0 whenever x is a steady state
but for ða,0Þ � v¼ 0 for all vAker M. The relationship between ker M

and fCðxÞ9x is a steady stateg is not straightforward. To sidestep this
problem, we focus here only on those invariants, a1xC1þ � � � þakxCk ,
in which (a,0) is in the rowspan of M. We call these type 1 complex-
linear invariants. Non-type 1 invariants do exist, as we show in the
Supporting Information (SI). The type 1 invariants form a vector space
that we abbreviate Ik; note that Ik depends on C1, . . . ,Ck and not just
on k. Two basic problems are, first, to determine the dimension of Ik
and, second, to generate its elements.

A simple solution to the second problem is to break the matrix
M into the n� k sub-matrix K consisting of the first k columns of
M and the n� ðm�kÞ sub-matrix N consisting of the remaining
m�k columns, so that M¼ K9N. Any vector byARn which is in the
of biochemical networks. J. Theor. Biol. (2012), http://dx.doi.org/
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left null space of N, bAN LðNÞ, so that b � N¼ 0, gives an ða,0Þ ¼
b �M that is in the rowspan of M. The assignment b-b �M thereby
defines a surjection, N LðNÞ-Ik. Moreover, b1 �M¼ b2 �M, if, and
only if, ðb1�b2ÞAN LðMÞDN LðNÞ. Hence, there is an isomorphism
IkffiN LðNÞ=N LðMÞ. If X is any n� r matrix, dim N LðXÞ ¼ n�rkX. We
conclude that dim Ik ¼ rkM�rkN, which yields an efficient way to
determine the dimension of Ik by Gaussian elimination.

In principle, this provides an automatic procedure for identify-
ing subsets of complexes with non-trivial invariants. First deter-
mine rkM and then, for each subset ZDf1, . . . ,mg, determine the
rank of the submatrix of M formed by those columns not in Z. If
the latter is smaller than the former, then there are non-trivial
type 1 complex-linear invariants on the complexes in Z. In
practice, it is usually more efficient to use biological knowledge
of the example being studied and the question being asked to
narrow the choice of Z. We outline such a systematic procedure
for finding invariants in the last section.

The method above amounts to eliminating the complexes
Ckþ1, . . . ,Cm by taking linear combinations of the defining rate
functions, f 1, . . . ,f n. This can be biologically informative because it
suggests which rate functions, and, hence, which species at steady
state, determine the invariant (Dasgupta et al., submitted for
publication).

2.3. Duality and the structure of Ik

In this section, we present an alternative procedure for
calculating complex-linear invariants, which is based on duality
and exploits the sparsity of (3). The procedure is schematically
illustrated in Fig. 1, as an aid to following the details.

We start, as before, with the n�m matrix, M that represents
the linear part of the CRNT decomposition, M¼ Y � LðGÞ. Let
d¼ dim ker M and let B be any m�d matrix whose columns form
a basis of ker M. Then, M � B¼ 0 and the rowspan of M and the
columnspan of B are dual spaces of each other. If ayARk, then
(a,0) is in the rowspan of M if, and only if, ða,0Þ � B¼ 0. If B0 is
the k�d sub-matrix of B consisting of the first k rows, then
ða,0Þ � B¼ 0 if, and only if, a � B0 ¼ 0. Hence, type 1 invariants form
the dual space to the columns of B0.

Proposition 1. The space Ik of type1 complex-linear invariants on

the complexes C1, . . . ,Ck satisfies dim Ik ¼ rkM�rkN¼ k�rkB0.

Let l¼ rkB0. Note that lrminðk,dÞ. If l¼k, then dim Ik ¼ 0 and
there are no type 1 invariants on C1, . . . ,Ck. If, however, lok, then
the original matrix B can be simplified in two steps. First the
columns. Since the column rank of B0 is l, elementary column
operations – interchange of two columns, multiplication of a
column by a scalar, addition of one column to another – can be
applied to the columns of B0, to bring the last d�l columns to zero.
If exactly the same elementary column operations are applied to
the full matrix B, a new matrix is obtained, which we still call B,
whose columns still form a basis for ker M. B is now in lower-
triangular block form

B¼
B0 0

n n

 !
, ð4Þ

where, as before, B0 is the k� l sub-matrix consisting of the first k

rows and l columns.
For the rows, since the row rank of B0 is still l, there are l rows

of B0 that are linearly independent. Let UDf1, . . . ,kg be the
corresponding subset of l indices and let V Df1, . . . ,kg be the
subset of k�l remaining indices. This defines a partition of the row
indices of B0 : U \ V ¼ | and U [ V ¼ f1, . . . ,kg. Let B0U be the l� l

sub-matrix of B0 consisting of the rows with indices in U and B0V be
the ðk�lÞ � l sub-matrix consisting of the remaining rows of B0.
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
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Using the same notation for ayARk, a � B0 ¼ 0 if, and only if,
aU � ðB

0
UÞþaV � ðB

0
V Þ ¼ 0. Since, by construction, B0U has full rank

and is hence invertible, this may be rewritten as

aU ¼�aV � ðB
0
V Þ � ðB

0
UÞ
�1: ð5Þ

This gives a non-redundant procedure for generating all elements
of Ik by choosing ayV ARk�l arbitrarily and ayU ARl to satisfy (5). The
resulting ayARk satisfy a � B0 ¼ 0 and give exactly the type 1 com-
plex-linear invariants on C1, . . . ,Ck.

Using the same notation for CðxÞARm, the invariants them-
selves are given by aU �CðxÞUþaV �CðxÞV ¼ 0, for any steady state
xARn. Substituting (5) and rearranging gives aV � ðCðxÞV�ðB0V Þ�
ðB0UÞ

�1
�CðxÞUÞ ¼ 0. Since aV can be chosen arbitrarily in the dual

space, we conclude that

CðxÞV ¼ ðB
0
V Þ � ðB

0
UÞ
�1
�CðxÞU , ð6Þ

which we summarise as follows.

Theorem 1. Each of the k�l rows of the matrix equation in (6) gives

an independent type 1 complex-linear invariant on C1, . . . ,Ck.

This procedure relies on the choice of basis elements for ker M

that make up the columns of B and on the choice of the subset, U,
of linearly independent rows of B0. These choices are not critical;
different ones yield different bases for Ik. Up to linear combina-
tions, the same invariants are found irrespective of the choices. All
the calculations required are linear and can be readily undertaken
in any computer algebra system with the rate constants treated as
symbols. (Mathematica was used for the calculations in the SI.)
The coefficients are then rational expressions in the symbolic rate
constants.

2.4. Haldane relationships and the Shinar–Feinberg theorem

Since M¼ Y � LðGÞ, ker M contains the subspace ker LðGÞ. The
structure of the latter is known from (3). This should assist in the
calculation of invariants, especially when ker LðGÞ is close to
ker M. We discuss two instances of this, which illustrate how
complex-linear invariants are related to previous studies.

Define the ‘‘dynamic deficiency’’ of a biochemical network,
dDANZ0, to be the difference in dimension between the two
subspaces: dD ¼ dim ker M�dim ker LðGÞ, or, equivalently, dD ¼

dimðker Y \ Image LðGÞÞ. This is different from the ‘‘deficiency’’ as
usually defined in CRNT (Feinberg, 1979; Gunawardena, 2003),
which we call the ‘‘structural deficiency’’, dSANZ0. While dD may
depend on the values of rate constants, dS is independent of them.
However, the former is more convenient for our purposes.

It is known that dDrdS. Furthermore, if there is only a single
terminal SCC in each connected component of G, which holds for
the graph in Fig. 2C but not for that in Fig. 4A, then dD ¼ dS

(Feinberg, 1979; Gunawardena, 2003). Recall that a graph is
connected if any two distinct nodes are linked by a path of
contiguous edges, ignoring directions. A connected component of
G is then a maximal connected sub-graph. Distinct connected
components are totally disconnected, with no edges between them.

Suppose first that dD ¼ 0 and that there is a positive steady
state xAðR>0Þ

n. Since LðGÞ �CðxÞ ¼ 0, x is a ‘‘complex-balanced’’
steady state, in the terminology of (Horn and Jackson, 1972).
According to (3), the vectors rt provide a basis for
ker M¼ ker LðGÞ and, furthermore, ðrtÞja0 if, and only if,
CjAGt . Choose any terminal SCC of G, which we may suppose to
be G1, and suppose that C1, . . . ,Ck are the complexes in G1. Choose
the matrix B so that r1 is its first column and the other rt for t41
are assigned to columns arbitrarily. By construction, B is already
in lower-triangular block form and l¼1. Setting U ¼ f1g and
V ¼ f2, . . . ,kg the k�1 type 1 invariants coming from (6) are
of biochemical networks. J. Theor. Biol. (2012), http://dx.doi.org/
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xCi ¼ ððr1Þi=ðr1Þ1Þx
C1 for 2r irk. It is not difficult to see from the

structure of B that these are the only type 1 invariants.
These invariants may be rewritten xCi=xC1 ¼ ðr1Þi=ðr1Þ1 to

resemble the Haldane relationships that hold between substrates
and products of a reaction at equilibrium (Cornish-Bowden,
1995). It follows from the construction of rt by the Matrix-Tree
Theorem that the right-hand side of this relationship is deter-
mined by the rate constants, as expected for a Haldane relation-
ship (Cornish-Bowden, 1995). Horn and Jackson introduced the
concept of a complex-balanced steady state, in part, to recover
such generalised Haldane relationships for networks of reactions
that might be in steady state but not at thermodynamic equili-
brium (Horn and Jackson, 1972; Gunawardena, 2012).

Now suppose that dD ¼ 1. Then, ker M¼/w,r1, . . . ,rTS, where
wARm is any vector in ker M that is not in ker LðGÞ. Choose B to
have columns in the same order. Suppose that there are k

complexes that are not in any terminal SCC and that indices are
chosen so that these are C1, . . . ,Ck. Then, ðrtÞi ¼ 0 for 1r irk and
1rtrT, so that B is already in lower-triangular block form with
l¼1. If xAðR>0Þ

n is a positive steady state, then CðxÞAker M and
CðxÞia0 for 1r irm. It follows that wia0 for 1r irk. We may
therefore choose U ¼ f1g and V ¼ f2, . . . ,kg and deduce from (6)
that xCi ¼ ðwi=w1Þx

C1 for 2r irk.
These type 1 complex-linear invariants lead to the theorem of

Shinar and Feinberg on ACR (Shinar and Feinberg, 2010). Suppose
that the structural deficiency of a network satisfies dS ¼ 1.
Suppose further that C1 and C2 are two complexes that are not
in any terminal SCC, whose stoichiometry differs only in species
Sq. Since dDrdS it must be that either dD ¼ 0 or dD ¼ 1. Suppose
the former. The rt then form a basis for ker M. Because C1 is not in
any non-terminal SCC, v1¼0 for any vAker M. However,
CðxÞAker M and, since xAðR>0Þ

n, CðxÞ1a0. This contradiction
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
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shows that dD ¼ 1. It then follows from the invariant above that
ðxqÞ

C2ðSqÞ�C1ðSqÞ ¼ w2=w1. Hence, the steady-state concentration of Sq

depends only on the rate constants and not on the initial
conditions or the total amounts and thereby exhibits ACR
(Shinar and Feinberg, 2010).

2.5. Bifunctional enzymes

The previous calculations only exploited Theorem 1 when l¼1.
We now consider examples with l41. Details of the calculations are
given in the SI. The examples concern enzyme bifunctionality.
Enzymes are known for being highly specific but some exhibit
multiple activities. One form of this arises when a protein catalyses
both a forward phosphorylation – covalent addition of phosphate,
with ATP as the donor – and its reverse dephosphorylation—

hydrolysis of the phosphate group. What advantage does such
bifunctionality bring over having two separate enzymes?

We discuss one bacterial and one mammalian example. In
Escherichia coli, osmolarity regulation is implemented in part by
the EnvZ/OmpR two-component system (Fig. 2A); for references,
see Shinar et al. (2007). Here, the sensor kinase, EnvZ, autopho-
sphorylates on a histidine residue and catalyses the transfer of the
phosphate group to the aspartate residue of the response regu-
lator, OmpR, which then acts as an effector. Bifunctionality arises
because EnvZ, when ATP is bound, also catalyses hydrolysis of
phosphorylated OmpR-P.

It was suggested early on that the unusual design of the EnvZ/
OmpR system might keep the absolute concentration of OmpR-P
stable (Russo and Silhavy, 1993). This was later supported by
experimental and theoretical analyses (Batchelor and Goulian,
2003), and the theoretical analysis was extended to other bifunc-
tional two-component systems (Shinar et al., 2007). These ad hoc
of biochemical networks. J. Theor. Biol. (2012), http://dx.doi.org/
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R.L. Karp et al. / Journal of Theoretical Biology ] (]]]]) ]]]–]]]6
calculations were clarified when a core network for EnvZ/OmpR
was found to have dS ¼ 1 and the Shinar–Feinberg Theorem could
be applied to confirm ACR for OmpR-P (Shinar and Feinberg,
2010). Attempts were made to broaden the analysis by extending
the core network to include additional reactions thought to be
present. For instance, EnvZ bound to ADP may also dephosphor-
ylate OmpR-P. Adding these reactions to the core gives a network
(Fig. 2B) with dS ¼ 2, so that Shinar–Feinberg can no longer be
applied. However, it was shown by direct calculation in Shinar
et al. (2007, Supplementary Information) that this network also
satisfies ACR for OmpR-P.

Here, we use complex-linear invariants to confirm ACR and to
find a formula for the absolute concentration value of OmpR-P in
terms of the rate constants. The labelled, directed graph on the
complexes has 13 nodes and 15 edges (Fig. 2C). Each connected
component has only a single terminal SCC and dD ¼ dS ¼ 2. We can
apply Theorem 1 to systematically find two new invariants.

Corollary 1. If the complexes in the reaction network in Fig. 2B are

ordered as shown in Fig. 2D, then the space of type 1 complex-linear

invariants on the complexes C1,C3,C8,C11 has dimension 2 and the

following are independent invariants,

k1k3

k2

� �
xC1�ðk4þk5Þx

C3 ¼ 0,

k5xC3�
k12k10

k11þk12

� �
xC8�

k15k13

k14þk15

� �
xC11 ¼ 0:

Using the expressions for the complexes in Fig. 2D, it can be
seen that

xC8 ¼ xC3 ½OmpR�P�, xC11 ¼ xC1 ½OmpR�P�:

Provided that ½EnvZ� ATP� ¼ xC3 a0, the invariants can be com-
bined and simplified to yield the following expression:

½OmpR�P� ¼
k1k3k5ðk11þk12Þðk14þk15Þ

k1k3k10k12ðk14þk15Þþk2k13k15ðk4þk5Þðk11þk12Þ
:

ð7Þ

This confirms that, as long as there is a positive steady state, the
steady-state concentration of OmpR-P is not affected by changes
in either the amount of OmpR or of EnvZ. The network exhibits
ACR for OmpR-P, with the absolute value being given in terms of
the rate constants by (7).

We now turn to our second example. 6-Phosphofructo-1-
kinase (PFK-1) is one of the key regulatory enzymes in glycolysis,
converting the small molecule fructose-6-phosphate to fructose-
1,6-bisphosphate (Fig. 3A); for references, see Dasgupta et al.
(submitted for publication). In mammalian cells, the bifunctional
PFK-2/FBPase-2 has two domains. PFK-2 has the same substrate
as PFK-1 but produces fructose-2,6-bisphosphate. This is a term-
inal metabolite that is not consumed by other metabolic pro-
cesses. Instead, it acts as an allosteric effector, activating PFK-1
and inhibiting fructose-1,6-bisphosphatase, the reverse enzyme
present in gluconeogenic cells, such as hepatocytes. The other
domain, FBPase-2, catalyses the dephosphorylation of F2,6BP and
produces F6P.

Biochemical studies lead to the reaction network in Fig. 3B.
The kinase domain has an ordered, sequential mechanism and the
kinase and phosphatase domains operate simultaneously; for
more details, see Dasgupta et al. (submitted for publication).
The corresponding labelled, directed graph on the complexes has
14 nodes and 19 edges (Fig. 4A). One of the connected compo-
nents has two terminal SCCs, dD ¼ 4 and dS ¼ 5.
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
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Corollary 2. If the complexes in the reaction network in Fig. 3B are

ordered as shown in Fig. 4B, then the space of type 1 complex-linear

invariants on the complexes C1,C2,C4,C6,C8,C11 has dimension 2 and

the following are the independent invariants

k1xC1�k2xC2þðk10�k8Þx
C6�ðk9þk11Þx

C8�k19xC11 ¼ 0,

k5xC4�k8xC6�k11xC8þðk18�k19Þx
C11 ¼ 0:

The second invariant in Corollary 2 was originally discovered
by ad hoc algebraic calculation. It is used in Dasgupta et al.
(submitted for publication) to show that, if the kinase dominates
the phosphatase, in the sense that k184k19, then the steady state
concentration of F6P is held below a level that depends only on
the rate constants and not on the amounts of the enzymes or the
substrate. Conversely, if the phosphatase dominates the kinase, so
that k18ok19, then the steady state concentration of F2,6BP is
similarly constrained below a level that depends only on the rate
constants and not on the amounts. Interestingly, regulation of
PFK-2/FBPase-2 by phosphorylation, under the influence of the
insulin and glucagon, causes the kinase and phosphatase activ-
ities to be shifted between the regimes k184k19 and k18ok19.
The implications of this for control of glycolysis are discussed in
Dasgupta et al. (submitted for publication).

2.6. A systematic procedure

The two examples discussed above had already been analysed
by other methods, so we had an idea of which invariants to expect
and which subset of complexes to consider. For a new network,
of biochemical networks. J. Theor. Biol. (2012), http://dx.doi.org/
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such information may not be available, so how can non-trivial
type 1 complex-linear invariants (simply, ‘‘invariants’’) be found?
The automatic procedure outlined in Section 2.2 can be used in
principle but this becomes computationally infeasible when there
are many complexes. We have found the following systematic
procedure to be helpful on several examples.

First determine the matrix M and from it the dual matrix B

using Section 2.3 and Fig. 2. The biological context and the
question being asked typically suggest one or more species of
interest. For the initial subset of complexes, Z, choose all those
complexes in which the species of interest have positive stoichio-
metry. Check if there are any invariants on Z using Proposition 1.
If not, then consider any additional complexes that have at least
one species in common with the complexes in Z. Add each of
these complexes to Z in turn, starting with those that introduce
the fewest new species and allowing the number of new species
to increase as slowly as possible. With each addition, test for
invariants as before. If this fails, consider adding the new com-
plexes in groups, trying, as before, to minimise the number of new
species that are introduced.

To demonstrate this procedure, we use a modification of the
EnvZ/OmpR network in Fig. 3B. We add a single new reaction

OmpR�P�!OmpR

for spontaneous (non-catalysed) dephosphorylation of OmpR-P.
The phospho-aspartate bond in response regulators is labile and
may be spontaneously hydrolysed, so this new reaction is bio-
chemically plausible. The labelled, directed graph for the modified
network in Fig. 5A has 15 nodes and 16 edges. Each connected
component still has only a single terminal SCC, like the graph in
Fig. 2C, but now dD ¼ dS ¼ 3. The matrices M and B are provided in
the SI, along with other details of the calculation.

The biological context suggests that the active state of the
response regulator, OmpR-P, is of most interest. Following the
procedure above and using the table in Fig. 5B leads to
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
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Z ¼ fC7,C8,C11,C14g as an initial subset of complexes. It can be
readily checked by inspection of B that the corresponding rows
yield a submatrix of full rank 4, so that Proposition 1 tell us that
there are no non-trivial invariants on Z. Among the remaining
complexes, C1, C2 and C3 each involve only species that are
already present among the complexes in Z. Adding each to Z in
turn, it can be checked that each of the subsets Z [ fC1g, Z [ fC2g

and Z [ fC3g have a space of invariants of dimension 1, which
respectively yield the following non-trivial invariants:

k16xC14�
k1k3k5

k2ðk4þk5Þ

� �
xC1þ

k10k12

k11þk12

� �
xC8þ

k13k15

k14þk15

� �
xC11 ¼ 0,

k16xC14�
k3k5

k4þk5

� �
xC2þ

k10k12

k11þk12

� �
xC8þ

k13k15

k14þk15

� �
xC11 ¼ 0,

k16xC14�k5xC3þ
k10k12

k11þk12

� �
xC8þ

k13k15

k14þk15

� �
xC11 ¼ 0: ð8Þ

These all have a similar form, due to the common subset Z. The
absence of C7 in these invariants could have been inferred directly
from the pattern of entries in B (SI).

A non-trivial invariant does not necessarily provide helpful
biological insights. This depends crucially on the context and the
question being studied. For instance, assuming that we have a
positive steady-state, the second invariant in (8) may be rewritten
in terms of steady-state species concentrations as

½OmpR�P� ¼

k3k5

k4þk5

� �
½EnvZ�

k16þ
k10k12

k11þk12

� �
½EnvZ�ATP�þ

k13k15

k14þk15

� �
½EnvZ�ADP�

: ð9Þ

Eq. (9) establishes a steady-state relationship between the acti-
vated response regulator, OmpR-P, and the sensor kinase, EnvZ,
under nucleotide loading. This may be useful depending on the
available experimental data. It does suggest that OmpR-P no
longer exhibits ACR, as it did for the network in Fig. 2B, since its
of biochemical networks. J. Theor. Biol. (2012), http://dx.doi.org/
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steady-state level appears to depend on the amount of EnvZ
present. However, not much more can be said just from (9).

The situation is different for the first and third invariants in
(8). They lead to a similar equation for [OmpR-P] as in (9) but
with the numerators on the right hand side given by, respectively

k1k3k5

k2ðk4þk5Þ

� �
½EnvZ�ADP� and k5½EnvZ�ATP�:

Because the same species now appears in both the numerator and
the denominator, a simple comparison and cancellation yields the
inequalities

½OmpR�P�o

k1

k2

k3k5

ðk4þk5Þ

ðk14þk15Þ

k13k15
,

k5
ðk11þk12Þ

k10k12
:

8>>><
>>>:

ð10Þ

The strictness of the inequality comes from the assumption that
the steady state is positive. We see that the activated response
regulator has two upper bounds that are robust: they depend only
on the rate constants and not on the initial conditions or the total
amounts of either EnvZ or OmpR. An interesting aspect of (10) is
the absence of parameters k6, . . . ,k9, that relate to the phosphor-
ylation of OmpR. The other reactions contribute factors to the
bounds that can be biochemically interpreted. Recall that the
catalytic efficiency of an enzyme is the ratio of its catalytic rate to
its Michaelis–Menten constant, kcat=KM (Cornish-Bowden, 1995).
The factor k13k15=ðk14þk15Þ in the first bound is the catalytic
efficiency of OmpR-P dephosphorylation by EnvZ-ADP, while the
factor k10k12=ðk11þk12Þ in the second bound is the catalytic
efficiency of OmpR-P dephosphorylation by EnvZ-ATP. The bal-
ance between these redundant dephosphorylation routes will
influence which of the two bounds is the tighter and this balance
is further modulated by the efficiency of nucleotide binding to
EnvZ. The first bound is modulated by the factor k3k5=ðk4þk5Þ,
which may be treated as an effective catalytic efficiency for EnvZ
phosphorylation by ATP (it has units of s�1 rather than M�1 s�1),
and the factor k1=k2, which is the equilibrium constant for ADP
binding. The second bound is only modulated by k5, which is the
catalytic rate for EnvZ phosphorylation.

The existence of these robust bounds also strongly suggests
that OmpR-P does not satisfy ACR. Indeed, it can be shown by
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
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algebraic calculation that [OmpR-P] can take different values in
different steady states (SI). In contrast to the second invariant in
(8), the first and third invariants yield interesting and unexpected
biological insights. Further non-trivial invariants can be sought
using the procedure above and we leave this for the reader.

We note two further points of interest. First, the addition of a
single new reaction to a network can markedly change its
behaviour from exhibiting ACR to only having robust bounds.
This is a feature of biochemical networks under mass-action
kinetics. It raises difficult problems of interpretation because
there is always the possibility that the actual cellular network
may include reactions that have been missed in a model. Very
little work has been done on this difficult question. Invariants
may provide a way to study it: perhaps certain invariants can be
shown to remain ‘‘invariant’’ when a network is enlarged in a
particular way. Second, a theme is emerging from the examples
considered here. Despite the differences in network structures
between Figs. 2, 3 and 5, the bifunctionality in each case serves to
limit the steady state concentration of a substrate form, either
absolutely, as in Fig. 2, or relative to some robust upper bound, as
in Figs. 3 and 5. We speculate that this may be a design principle
of those bifunctional enzymes that catalyse forward and reverse
modifications. There are other forms of bifunctionality, such as
enzymes that catalyse successive steps in a metabolic pathway,
and preliminary studies suggest that these behave very differ-
ently. If modification bifunctionality did evolve to implement
concentration control, markedly different network structures
seem to have converged upon it.
3. Discussion

The nonlinearity of molecular networks makes it impossible to
solve their dynamical behaviour in closed form. Their analysis has
therefore relied on numerical integration and simulation, for
which the biochemical details and the numerical values of all
parameters must be specified in advance. This has made it
difficult, if not impossible, to ‘‘see the wood for the trees’’ and
to discern general principles within the overwhelming molecular
complexity of cellular processes. Invariants are part of a new
approach in which network behaviour at steady state can be
of biochemical networks. J. Theor. Biol. (2012), http://dx.doi.org/
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analysed with the parameters treated symbolically. There are
now several examples, drawn from different biological contexts,
in which the invariants summarise the essential steady-state
properties of the network. The key to wide exploitation of this
method is that it should be readily applicable to realistic net-
works. In principle, Gröbner bases allow any invariant to be
calculated but this is computationally infeasible in practice.
Complex-linear invariants form a limited subset of all invariants
but, as shown here, they have biological significance and can be
efficiently calculated for realistic networks. Our work clarifies
previous results and provides a new tool for symbolic, steady-
state analysis of molecular networks.
Acknowledgements

MPM and AD were partially supported by UBACYT
20020100100242, CONICET PIP 112-200801-00483, and ANPCyT
PICT 2008-0902, Argentina. RLK, TD and JG were partially sup-
ported by NSF 0856285. We thank two anonymous reviewers for
their helpful comments which led to several improvements.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org.10.1016/j.jtbi.2012.07.004.
References

Batchelor, E., Goulian, M., 2003. Robustness and the cycle of phosphorylation and
dephosphorylation in a two-component regulatory system. Proc. Natl. Acad.
Sci. U.S.A. 100, 691–696.

Cornish-Bowden, A., 1995. Fundamentals of Enzyme Kinetics, 2nd edition Portland
Press, London, UK.
Please cite this article as: Karp, R.L., et al., Complex-linear invariants
10.1016/j.jtbi.2012.07.004
Cox, D., Little, J., O’Shea, D., 1997. Ideals, Varieties and Algorithms, 2nd edition
Springer.

Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., 2009. Toric dynamical systems.
J. Symb. Comput. 44, 1551–1565.

Dasgupta, T., Croll, D.H., Owen, J. A., Vander Heiden, M.H., Locasale, J.W., Alon, U.,
Cantley, L.C., Gunawardena, J. A fundamental trade off in covalent switching
and its circumvention in glucose homeostasis. submitted for publication.

Feinberg, M., 1979. Lectures on Chemical Reaction Networks. Lecture Notes.
Mathematics Research Center, University of Wisconsin.

Feinberg, M., Horn, F., 1977. Chemical mechanism structure and the coincidence of
the stoichiometric and kinetic subspace. Arch. Rational Mech. Anal. 66, 83–97.

Gunawardena, J., 2003. Chemical Reaction Network Theory for In-Silico Biologists.
Lecture Notes. Harvard University. vcp.med.harvard.edu/papers/crnt.pdf.

Gunawardena, J., 2010. Models in systems biology: the parameter problem and the
meanings of robustness. In: Lodhi, H., Muggleton, S. (Eds.), Elements of
Computational Systems Biology. Wiley Book Series on Bioinformatics. John
Wiley and Sons, Inc.

Gunawardena, J., 2012. A linear framework for time-scale separation in nonlinear
biochemical systems. PLoS ONE 7, e36321.

Horn, F., Jackson, R., 1972. General mass action kinetics. Arch. Rational Mech. Anal.
47, 81–116.

Kramer, B.P., Viretta, A.U., Daoud-El-Baba, M., Aubel, D., Weber, W., Fussenegger,
M., 2004. An engineered epigenetic transgene switch in mammalian cells.
Science 22, 867–870.

Laurent, M., Kellershohn, N., 1999. Multistability: a major means of differentiation
and evolution in biological systems. Trends Biochem. Sci. 24, 418–422.

Manrai, A., Gunawardena, J., 2008. The geometry of multisite phosphorylation.
Biophys. J. 95, 5533–5543.
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