A systems approach to biology

SB200

Lecture 8
9 October 2008

Jeremy Gunawardena
jeremy@hms.harvard.edu
Recap of Lecture 7

gastrulation & neurulation

Hox genes

segmentation

somitogenesis

Bendixson's Negative Criterion

\[
\frac{dx_1}{dt} = f_1(x_1, x_2) \\
\frac{dx_2}{dt} = f_2(x_1, x_2)
\]

\[\text{Tr}(Df) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \]

either > 0 or < 0 throughout D

then D has no periodic orbits

Tyson-Othmer period formula

\[p < \sec^n(\pi/n) \]
potential alternatives

- indirect negative feedback
- explicit accounting for time delays

Julian Lewis
“Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator”
Current Biology 13:1398-408 2003

Nick Monk
“Oscillatory expression of Hes1, p53 and NF-kappaB driven by transcriptional time delays”
Current Biology 13:1409-13 2003
Differential-delay equation (DDE)

new notation!

\[\frac{dx_1(t)}{dt} = ax_2(t - T_p) - bx_1(t) \]

\[\frac{dx_2(t)}{dt} = f(x_1(t - T_m)) - cx_2(t) \]
Linear differential-delay equation in 1 variable

\[\frac{dx(t)}{dt} = ax(t - T_0) \]

Initial condition \(x(t) \) for \(0 \leq t \leq T \) where \(T > T_0 \)

Solve ODE \(\frac{dx(t)}{dt} = a \)

for \(T \leq t \leq T + L \)
Initial conditions must be specified over a time interval \(T \) which exceeds all time delays in the equation

DDEs are infinite dimensional dynamical systems

They can be numerically integrated by reducing to an iterative series of ODEs

Solutions can be discontinuous (kinked)

Kinks may introduce numerical instability

Matlab has a standard \texttt{dde23} solver while an external package \texttt{NdelayDSolve} is available for Mathematica
\[\frac{dx_1(t)}{dt} = ax_2(t - T_p) - bx_1(t) \]
\[\frac{dx_2(t)}{dt} = f(x_1(t - T_m)) - cx_2(t) \]

negative feedback

\[f(u) = \frac{k}{1 + (u/u_0)^2} \]

consistent with transcription factor dimerisation

half-maximal dose

\[k = 1 \quad u_0 = 2 \]
\[\frac{dx_1(t)}{dt} = ax_2(t - T_p) - bx_1(t) \]
\[\frac{dx_2(t)}{dt} = f(x_1(t - T_m)) - cx_2(t) \]

f(u) = \frac{k}{1 + (u/u_0)^2}

\begin{align*}
\text{rate} & \quad \text{value} \\
a & \quad \text{protein synthesis rate} & 4.5 \text{ molecules/ transcript} \\
b & \quad \text{protein degradation rate} & 0.23 \text{ molecules/ minute} \\
c & \quad \text{mRNA degradation rate} & 0.23 \text{ molecules/ minute} \\
k & \quad \text{maximal mRNA synthesis rate} & 33 \text{ molecules/ minute (1000 transcripts/hour)} \\
u_0 & \quad \text{feedback threshold} & 40 \text{ molecules (1nM in a 5 micron diameter nucleus)} \\
RNA \text{ Pol II speed} & \quad 20 \text{ bp/sec} \\
\text{intron splicing} & \quad 1 \text{ minute per intron} \\
\text{nucleo-cytoplasmic transport} & \quad 4 \text{ minutes} \\
\text{ribosome speed} & \quad 6 \text{ bp/sec} \\
\text{her7} & \quad \text{primary mRNA 1280 bp, 2 introns} \\
\text{Her7} & \quad 204 \text{ aa} \\
\text{expected } T_m & \quad 7.1 \text{ minutes, } T_p = 1.7 \text{ minutes}
\end{align*}

Julian Lewis

“Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator”

Current Biology 13:1398-408 2003
70% reduction in protein synthesis still gives sustained oscillations.
oscillation requires $1/b, 1/c \ll T_p + T_m \ (= T \ \text{the total delay})$

in this limit, the period is approximately given by $2(T + 1/b + 1/c)$
similar results for mouse Hes1 oscillation using measured

mRNA half-life = 24.1 ± 1.7 minutes
protein half-life = 22.3 ± 3.1 minutes

giving oscillations with period ~2 hours

Hirata et al
“Oscillatory expression of the bHLH factor Hes1 regulated by negative feedback loop”
Science 298:840-3 2002

Monk
“Oscillatory expression of Hes1, p53 and NF-kappaB driven by transcriptional time delays”
Current Biology 13:1409-13 2003
Hirata, Bessho, Kokubu, Masamizu, Yamada, Lewis, Kageyama

“Instability of Hes7 protein is crucial for the somite segmentation clock”
Nature Genetics 36:750-4 2004
Ian Swinburne, David Miguez, Dirk Landgraf, Pamela Silver
“Intron length increases oscillatory periods of gene expression in animal cells;”

Saenger et al, “The tetracycline repressor – a paradigm for a biological switch,”
1. delays can make a significant difference in dynamics

2. DDE models are much better than they ought to be!

the DDE models represent the biology in a single cell, with no cell-cell interaction or external signals. they describe the behaviour of a single cell very poorly but that of a tissue very well. we do not understand this!
strong promoters, with tight repression

ssrA destruction tags to reduce protein half-lives

Elowitz & Leibler

“A synthetic oscillatory network of transcriptional regulators”
Nature 403:335-8 2000
160 mins +/- 40 mins
pure negative feedback oscillators can be very “noisy” at a single cell level

noise – variation in period and amplitude within a single cell
– variation from cell to cell

for somitogenesis, such noise may be corrected by cell-to-cell interactions and global morphogen gradients ...
circadian oscillation

Barkai-Leibler proposal: oscillators with interlinked positive and negative feedback loops are

- more robust with respect to parameter change
- more noise resistant

Vilar, Kueh, Barkai & Leibler
“Mechanisms of noise resistance in genetic oscillators”
PNAS 99:5988-92 2002

Barkai & Leibler
“Circadian clocks limited by noise”
Nature 403:267-8 1999
the early embryonic cell cycle

Novak-Tyson model: early embryonic cell cycle in Xenopus

interlinked positive and negative feedback loops

“Numerical analysis of a comprehensive model of M phase control in Xenopus oocyte extracts and intact embryos”

J Cell Sci 106:1153-68 1993

Andrew Murray & Tim Hunt
The Cell Cycle
OUP, 1994
calcium oscillation

Meyer-Stryer model: repetitive Ca\(^{2+}\) spikes upon stimulation of some cells by hormone

increasing amplitude of hormone stimulation -> increasing frequency of oscillation

Meyer & Stryer
“Molecular model for receptor-stimulated calcium spiking”
PNAS 85:5051-5 1988

interlinked positive and negative feedback loops

fertilisation induced Ca\(^{2+}\) oscillations recorded in a mouse egg using Fura Red
oscillations can arise through a Hopf bifurcation
Hopf bifurcation

stable spiral becomes unstable

determinant/trace diagram

eigenvalue in the complex plane

\[\begin{align*}
\text{a < 0} \\
a + ib \\
a - ib
\end{align*} \]

\[\begin{align*}
\text{c > 0} \\
\text{c} + \text{id} \\
\text{c} - \text{id}
\end{align*} \]
Let D be a closed, bounded region of the state space which contains no steady states of the system. If D is also a trapping region, then D contains a periodic orbit (limit cycle).

often used to prove existence of a periodic orbit after a Hopf bifurcation but it only works in 2 dimensions
Example of a Hopf bifurcation – the Fitzhugh-Nagumo oscillator

2D simplification of 4D Hodgkin-Huxley equation for nerve conduction

\[C_m \frac{dV}{dt} = -g_K n^4 (V-V_K) - g_{Na} m^3 h (V-V_{Na}) - g_L (V-V_L) + I_{appl} \]

\[\tau_n(V) \frac{dn}{dt} = n_\infty(V) - n \]
\[\tau_m(V) \frac{dm}{dt} = m_\infty(V) - m \]
\[\tau_h(V) \frac{dh}{dt} = h_\infty(V) - h \]

\[\frac{dx_1}{dt} = x_2 + x_1 - \frac{x_1^3}{3} \]
\[\frac{dx_2}{dt} = -c(x_1 + bx_2) \]

Hodgkin-Huxley

Fitzhugh-Nagumo

Christof Koch
Biophysics of Computation
OUP, 2004
\[
\begin{align*}
\frac{dx_1}{dt} &= x_2 + x_1 - \frac{x_1^3}{3} \\
\frac{dx_2}{dt} &= -c(x_1 + bx_2)
\end{align*}
\]

Assume \(b = 0.2 \)

If \(c > 5 \) then \((0,0)\) is a stable spiral

At \(c = 5 \) there is a Hopf bifurcation

If \(c < 5 \) then \((0,0)\) is an unstable spiral

\[
Df = \begin{pmatrix}
1 - x_1^2 & 1 \\
-c & -cb
\end{pmatrix}
\]

At \((0,0)\)

\[
det Df = c(1 - b) \quad Tr Df = 1 - cb
\]
c = 8

stable spiral
c = 4

unstable steady state surrounded by stable periodic orbit (limit cycle) one time scale
two time scales – fast/slow
relaxation oscillation
relaxation oscillations can arise from
interlinked positive and negative feedback loops

“hysteresis-based oscillation mechanism”

positive feedback gives bistability
interlinked negative feedback drives hysteresis

slow relaxation followed by fast change

http://www.iro.umontreal.ca/~eckdoug/vibe/

Oscillators with interlinked positive and negative feedback loops appear widely in biology. They can give rise to relaxation oscillations with fast/slow time scales. Such oscillators may have advantages over pure negative feedback loops in some contexts.
Summing it all up

dynamical systems

\[\frac{dx_1}{dt} = f(x_2) - ax_1 \]
\[\frac{dx_2}{dt} = g(x_1) - bx_2 \]

matrix algebra

linear dynamical systems

Det/Tr diagram

\[\frac{dx_1(t)}{dt} = ax_2(t - T_p) - bx_1(t) \]
\[\frac{dx_2(t)}{dt} = f(x_1(t - T_m)) - cx_2(t) \]
I am always happy to talk about systems biology, either by e-mail or in person. My lab is in Goldenson 504 on the HMS campus but I get over to the College from time to time. Enjoy the rest of the course.

jeremy@hms.harvard.edu

http://www.hms.harvard.edu/about/maps/quadmap.html