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recap

the solutions of a linear ODE are linear combinations of terms of the 
form           where      are the roots of the characteristic equation

stable if, for all roots      ,

different kinds of negative feedback have different effects – redundancy 
can be more apparent than real

the Laplace transform converts differentiation by s (or t) into 
multiplication by t (or s)



E coli chemotaxis

H Berg, E coli in Motion, Springer 2003

E coli navigates towards an attractant, or away from a repellent, by rotating its 
flagella, alternating between “runs” (flagella rotating together) and “tumbles” 
(flagella rotating apart). By changing the tumbling frequency, a bacterium can 
navigate along a chemotactic gradient.



molecular circuitry of E coli chemotaxis

N Barkai, S Leibler, “Robustness in simple biochemical networks”, Nature 387:913-7 1997

methylation
(on 4 sites)

phosphorylation

right hand image here and on the previous slide from Sandy Parkinson's lab @University of 
Utah – chemotaxis.biology.utah.edu/Parkinson_Lab/



perfect adaptation, in theory

steady-state tumbling frequency returns to its set point after a disturbance, with 
no steady-state error. 
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“Figure 3a illustrates the most striking result of the model ... Typically, one can 
change simultaneously each of the rate constants several fold and still obtain, on 
average, only a few per cent deviation from perfect adaptation”

probability P > 0.95



squares - unstimulated cells)
circles - 1mM aspartate at t = 0 

each data point averaged over 100-400 cells 
for 10 secs (see *)

E coli RP437 strain

U Alon, M G Surette, N Barkai, S Leibler, “Robustness in bacterial chemotaxis”, Nature 
397:168-71 1999

perfect adaptation, in practice

CheR fold expression in CheR 
deletion strain

* Korobkova, Emonet, Vilar, Shimizu, Cluzel, “From molecular noise to behavioural variability 
in a single bacterium”, Nature 428:574-8 2004



perfect adaptation arises from integral control

the Barkai-Leibler model implements integral control, in the sense that a 
generalised variable, z, can be identified for which

T-M Yi, Y Huang, M I Simon, J Doyle, “Robust perfect adaptation in bacterial chemotaxis 
through integral feedback control”, PNAS 97:4649-53 2000

integral control variable
controlled variable

reference value

z is approximately the total receptor methylation level in the Barkai-Leibler model

furthermore, perfect adaptation implies integral control



matrix formulation

1 component, order n

n components, order 1

put matrix in triangular form by 
Gaussian elimination

see “Matrix algebra for beginners, Parts I, II & III”



characteristic roots = eigenvalues

in the matrix formulation, the stability condition is that all the eigenvalues of the 
matrix  A have negative real parts

characteristic polynomialcharacteristic polynomial eigenvalue equation



the internal models principle

a controller which perfectly adapts to an additive perturbation must contain an 
internal model of the perturbation

Francis, Wonham, “The internal model principle of control theory”, Automatica 12:457-465 
1976; E Sontag, “Adaptation and regulation with signal detection implies internal model”, 
Systems & Control Letters, 50:119-26 2003; M Kawato, “Internal models for motor control and 
trajectory planning”, Curr Opin Neurobiol 9:718-27 1999.

perturbation



linear systems approximate nonlinear systems

HARTMAN-GROBMAN THEOREM – in the vicinity of a hyperbolic steady state 
(all eigenvalues of the Jacobian have non-zero real part), a nonlinear system 
can be qualitatively approximated by a linear one

nonlinear dynamics linear dynamics

mapping

position at time t
mapping

position at time t

mapping

Jacobian matrix



osmolarity regulation in S cerevisiae

yeast are unicellular fungi whose external environment can exhibit changes in 
osmolarity on fast and slow time scales

hyperosmotic shock

water

volume decrease glycerol accumulation
volume recovery

water

minutes ~ hour



detailed model of the molecular network

Klipp, Nordlander, Kruger, Gennemark, Hohmann, “Integrative model of the response of yeast 
to osmotic shock”, Nature Biotech 23:975-82 2005

glycolysis

two-component signalling
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gene regulation



osmolarity regulation as a control system

D Muzzey, C Gomez-Uribe, J T Mettetal, A van Oudenaarden, “A systems-level analysis of 
perfect adaptation in yeast osmoregulation”, Cell 138:160-71 2009
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Hog1-YFP, haploid SHO1- cells

population average returns to its set point 
perfect adaptation - no steady-state error

cell-to-cell variation is low

Hog1 nuclear enrichment shows perfect adaptation

homeostatic response to step-function increase in external NaCl

SHO1 deletion disables the 
non-Sln1 pathway of Hog1 

activation

perfect adaptation implies integral control in the linear approximation



locating the integral feedback

there is a single integrator, localised to 
the Hog1-dependent module D

integral control requires Hog1 kinase 
(Pbs2) activity

You, ..., Brown, “A systems biology analysis of long and short-term memories of osmotic 
stress adaptation in fungi”, BMC Res Notes 5:258 2012

further analysis and extension to Candida albicans:



a more complex control problem

complex outputcomplex input repeaters, 
amplifiers

x(t)f(t)

need to ensure that the output recapitulates the input with “high fidelity”

trans-continental telephony, early 20th century, 

need to understand the input/output behaviour of a highly complex system 
without knowing all the internal details



1905-19821889-1976

follow the sines

force the system with a sinusoidal input and look at 
the output

Hendrik Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 
New York 1945

Harry 
Nyquist

Hendrik 
Bode



if the system is stable, so that the roots of Z(s) have negative real parts, then 
cannot be a repeated root 

after the transients have died down, the response of a stable linear 
system to sinusoidal forcing is a sinusoidal output at the same frequency

because of stability

stable system has output at same frequency



but what is the amplitude, B?

the transfer function

the transfer function is the reciprocal of the characteristic polynomial



linear frequency analysis

the amplitude is the transfer function, evaluated at the forcing frequency

phase lag or leadgain

.

for high fidelity, the gain and the phase lag/lead should change little with frequency



second-order linear ODEs

coefficent of x is +1

(time)
-1

dimensionless

with these choices the characteristic polynomial has the following two roots 

consider a system normalised the way physicists prefer

positive

fundamental frequency

damping ratio

and the system is stable provided that  > 0
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Bode plots

follow the sines ... 
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