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solving linear ODEs – preliminaries 

n-th order, homogeneous linear ordinary differential equation (ODE), with constant 
coefficients, 

initial conditions: to uniquely determine a solution, n initial conditions must be 
specified

we want to determine the solutions,           , of the equation and work out the 
stability of the steady state at 



solving linear ODEs of order 1

the first-order, linear ODE

has the unique solution

where the exponential function                              is defined by

(this definition works generally for complex numbers or matrices *)

* see the lecture notes “Matrix algebra for beginners, Part III”

initial condition



solving linear ODEs of order 2

the second-order, linear ODE

has solutions                         and 

Euler's formula

the exponential function over the complex numbers solves ODEs of order 
1 and 2

1707-1783



complex numbers

numbers written in the form              with a, b ordinary “real” numbers and 



solving linear ODEs of order n

the solution of any linear ODE, no matter what its order, is (almost*) a linear 
combination of complex exponentials

* you also need powers of t 

THAT IS ALL YOU NEED (WELL, ALMOST*)

where         are complex numbers determined by the coefficients and        are 
complex numbers determined by the initial conditions 



the Laplace transform

transforms a function          of t into a function                   of s 

the integral is defined (“converges”) for s sufficiently large, provided          does 
not increase “too fast”

s may take complex values, in which case the integral is defined for the real part 
of s sufficiently large – so that the Laplace transform is defined in some right half 
plane of the complex numbers

1749-1827



using it to solve linear ODEs

1. apply the Laplace transform

3. break up this function of s into a linear combination of functions 
whose Laplace transforms are known (provided in a Table)

4. use the Table to write down the solution

2. express the Laplace transform of the solution as a function of s

the Laplace transform converts differentiation by t into 
multiplication by s, thereby transforming calculus into algebra

Paul Nahin, Oliver Heaviside. The Life, Work and Times of an Electrical Genius of the Victorian Age, 
Johns Hopkins University Press, 1988; Bush, Operational Circuit Analysis, John Wiley, 1929 

1850-1925

Heaviside

Vaneevar Bush, Operational Circuit Analysis, John Wiley, 1929. Bush wrote that readers would “frequently
turn for inspiration and background to Heaviside's own works, of which this is in some sense an interpretation” 

5. remember Oliver Heavside



properties of the Laplace transform

1. it converts differentiation by t into multiplication by s 

initial condition

2. it converts multiplication by t into differentiation by s



properties of the Laplace transform

3. it is linear

4. it is one-to-one (for our purposes)

if then



TABLE of Laplace 
transforms

initial conditions



solving linear ODEs with the Laplace transform

1. apply the Laplace transform to both sides

2. use the properties of        and the TABLE to simplify and solve for



solving linear ODEs with the Laplace transform

3. use partial fractions to rewrite the RHS in terms of functions in the TABLE

4. now use the TABLE again to deduce what the solution must have been



solving linear ODEs – partial fractions  

3. use partial fractions to rewrite the RHS in terms of functions in the TABLE

this depends on the linear factors of the denominator polynomial 

which determine where the denominator polynomial becomes 0, at s = 0 and s = -a



outputinput

open loop system

“driving” or “forcing” function

solving linear ODEs – the general linear system



solving linear ODEs – apply Laplace transform

recall the formula from the TABLE

apply the Laplace transform to both sides of the equation

depends only on the 
initial conditions

 

resembles the original differential equation depends only on the forcing



solving linear ODEs – structure of the solution

solve for 

the denominator resembles the original differential equation via the relationship

the numerator is determined by the forcing term and the initial conditions

step 3 (partial fractions) requires the linear factors of the characteristic polynomial

characteristic polynomial



polynomials in one variable

degree

coefficients

if, and only if, 

a linear factor                   of             corresponds to a root (or a zero)

a polynomial of degree n can have no more than n roots, counted with multiplicity

the polynomial                   has no roots which are real numbers but does have 
roots which are complex numbers



fundamental theorem of algebra

1777-1855

a polynomial of degree n with complex coefficients 
always has n complex roots:

this theorem was first properly stated in Gauss's doctoral thesis in 1799: “Demonstratio 
nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in 
factores reales primi vel secundi gradus resolvi posse”

where                    are complex numbers 

the complex numbers are “algebraically closed”

if the coefficients of the polynomial are real, then the roots may be complex but 
they will occur in conjugate pairs        and 



solving linear ODEs – partial fractions

term in partial fraction 
expansion

factor in characteristic 
polynomial

root zi appears 
once only

root zj appears 
rj times

express the characteristic polynomial in terms of its roots, collecting together 
repeated roots 



solving linear ODEs with no forcing

step 3 becomes the following partial fraction expansion

the solution can then be read off from the TABLE as in step 4

powers of t in the solution arise from repeated roots of the characteristic polynomial



in summary, when there is no forcing,

has solutions which are linear combinations of terms of the form

where        is a root of the characteristic polynomial

and       is less than the number of times       is repeated as a root

complex conjugate roots conspire to make the overall solution real



solving linear ODEs with forcing

the forcing term             may introduce new roots into the denominator

the Laplace transform of the solution is given by

we will see this again in the next lecture with the Bode plot



stability, or “preventing wide oscillations”

the stability of a linear ODE is determined by how it behaves in the 
absence of any forcing

when its steady state occurs at x = 0 

the system is STABLE if it relaxes back to 0 from any initial condition

stable unstable



stability and the roots of Z(s)

a decaying exponential of rate a > 0, no matter how small, will always overwhelm 
a power of t, no matter how large,

the solution with any initial condition is a linear combination of terms 

Euler's formula – 
sine or cosine

increasing power of t 
(if zu is repeated)

increasing or decaying exponential depending on 
whether au is positive or negative

real part

imaginary part

hence, the solution with any initial condition will relax to 0 if all the roots of the 
characteristic equation have negative real parts



.

.

.

.

.

.

.

.

.

.

a < 0, b = 0

a > 0, b = 0

a = 0,  ±b

a < 0,  ±b

a > 0,  ±b

a = 0,  ±b, repeated twice

time

x

stability depends on the real part of the root



1831-1879

stability of a linear ODE

a linear ODE, with no forcing term, is stable if the roots of its 
characteristic equation all have negative real parts

J C Mawell, “On governors”, Proc Roy Soc, 16:270-83, 1868. 



second-order linear ODEs

coefficient of x is +1

(time)
-1

dimensionless

with these choices the characteristic polynomial has the following two roots 

consider a system which can be normalised as follows

positive

fundamental frequency

damping ratio

the system is stable provided that  > 0



undamped

underdamped

critically damped

overdamped



integral controllers

r = 2, b = 2, ki = 1

r = 2, b = 2, ki = 3

r = 2, b = 2, ki = 0.4

r = 2, b = 2, ki = 50

= 1.58

overdamped

= 1
critically damped

= 0.58

underdamped

= 0.14

“ringing” or “hunting”



proportional integral controllers

r = 2, b = 2, ki = 50, kp = 10r = 2, b = 2, ki = 50, kp = 13

= 0.85

underdamped

= 1.06

overdamped
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