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solving linear ODEs - preliminaries

n-th order, homogeneous linear ordinary differential equation (ODE), with constant
coefficients,

A" An— 1 T d.

i + ap-1 Jin—1 + -+ alg + agr =0

an

we want to determine the solutions, x(t) , of the equation and work out the
stability of the steady state at

r=20

initial conditions: to uniquely determine a solution, n initial conditions must be
specified

dx d?x d* 1z
z(0), —(0), —(0),---

i 0
dt dt? ' dt”_l( )




solving linear ODEs of order 1

dx
the first-order, linear ODE = ax

=

initial condition
has the unique solution i

2(t) = e™2(0)

where the exponential function E?t — exp(t) is defined by

o e B

n!

et=1+t+

(this definition works generally for complex numbers or matrices *)

* see the lecture notes “Matrix algebra for beginners, Part IIl”



solving linear ODEs of order 2

d?x
the second-order, linear ODE @ = —gr a >0

has solutions cos(y/at) and sin(y/at)

(5 o]

42k
cos(t) = Z(—l)h k)]

k=0

el = cos(t) + isin(t) «—— Euler's formula

et 4 e~ elt _ o—it
cos(t) = sin(t) =
2 ) 2i

the exponential function over the complex numbers solves ODEs of order
1 and 2



complex numbers

numbers written in the form a -+ ib with a, b ordinary “real” numbers and i = —1

complex plane +Im(z)

iz a
b x=a+ih= |z|:ﬂé¢’

() Fhﬂ{z)'

b a
nom |z| = {Zf]l*'fz = v/a? + b
b « Z =a — ib conjugate
Figure 4.2: The complex plane, or Argand diagram, showing the point = = a + ib; its complex

conjugate, T = a — ib; its norm, |z|, or distance from the origin; and the point iz, which is given by
counter-clockwise rotation of z through 90 degrees. z can be represented either in terms of its real
and imaginary parts, z — a + ib, or by using Euler's formula in Eq. 4.13 to write it as z = |z|e*?,

where ¢ 1= the angle between z and the real axis, so that a = |z| cos(¢) and b = |z| sin(g).



solving linear ODEs of order n

THAT IS ALL YOU NEED (WELL, ALMOST*)

the solution of any linear ODE, no matter what its order, is (almost*) a linear
combination of complex exponentials

E /\iﬁzlt
i‘l

where 2z; are complex numbers determined by the coefficients and \; are
complex numbers determined by the initial conditions

* you also need powers of t t1 e#t



the Laplace transform

transforms a function () of t into a function (Lx)(s) of s

1749-1827

(Lm)(8) = fo & Rp(Bdr  Rels) > e

the integral is defined (“converges”) for s sufficiently large, provided ;1‘.(t) does
not increase “too fast”

s may take complex values, in which case the integral is defined for the real part

of s sufficiently large - so that the Laplace transform is defined in some right half
plane of the complex numbers



using it to solve linear ODEs

Heaviside

the Laplace transform converts differentiation by t into
multiplication by s, thereby transforming calculus into algebra

1. apply the Laplace transform . VW P
1850-192

2. express the Laplace transform of the solution as a function of s

3. break up this function of s into a linear combination of functions
whose Laplace transforms are known (provided in a Table)

4. use the Table to write down the solution

5. remember Oliver Heavside

Paul Nahin, Oliver Heaviside. The Life, Work and Times of an Electrical Genius of the Victorian Age,
Johns Hopkins University Press, 1988; Bush, Operational Circuit Analysis, John Wiley, 1929

Vaneevar Bush, Operational Circuit Analysis, John Wiley, 1929. Bush wrote that readers would “frequently
turn for inspiration and background to Heaviside's own works, of which this is in some sense an interpretation”



properties of the Laplace transform

1. it converts differentiation by t into multiplication by s

£(%) =) - o)

dt T

initial condition

2. it converts multiplication by t into differentiation by s

L) =~ (L)



properties of the Laplace transform

3. itis linear

LA121(t)+Aowo(t)) = A (Lag)(s)+A2(La2)(s)

4. it is one-to-one (for our purposes)

if (Lf)(s) = (Lg)(s) then [f(t) = g(t)



f(t) (Lf)(s)
1 1
S
41 n!
Sn—l—l
TABLE of Laplace
; 1 transforms
a
: S —a
tneat n!
(S _ a)n—l—l
dn f " =
el B CHIORS W I )

I

initial conditions



solving linear ODEs with the Laplace transform

dax
— ,:b
dt—l—a’r

1. apply the Laplace transform to both sides
dx
L{— +az) = L(b)

2. use the properties of £ and the TABLE to simplify and solve for L

(L) + a(La) = 2 + 2(0)

5 b x(0)
L = s(s 4+ a) T s+ a




solving linear ODEs with the Laplace transform

5 b x(0)
W) = s(s 4+ a) T s+ a

3. use partial fractions to rewrite the RHS in terms of functions in the TABLE

s(si—a) - (z) (1 S—ll—a>

4. now use the TABLE again to deduce what the solution must have been

b b
T(f) — ; -+ (’I‘(O) . ;)e—at



solving linear ODEs - partial fractions

3. use partial fractions to rewrite the RHS in terms of functions in the TABLE

this depends on the linear factors of the denominator polynomial

s° +as = s(s+a)

which determine where the denominator polynomial becomes 0, ats =0and s = -a



solving linear ODEs - the general linear system

“driving” or “forcing” function

\ open loop system
() z(t)

d?l
—> S ek 1— + agr |——>
input il output
d" dn—1, 1 7
an dtn + a,.n._l dfn,—l —l— i W + (L‘l + aOT- — f(f)



solving linear ODEs - apply Laplace transform

d™r dn— 1 T

dtn + an-1 dtn—1

an

dx
+ - a1= + aor = £(1)

recall the formula from the TABLE

dj T : g - d%x
i . Z: j—u—1

—

depends only on the
initial conditions
apply the Laplace transform to both sides of the equation

(ans"+a, 15" L4 -Fays+ap)(Lx) —c(s) = (LF)(s)

| T

resembles the original differential equation depends only on the forcing



solving linear ODEs - structure of the solution

Lf 4 c(s)
ans" +a,_1s""1 4+ ... 4+ a;s+ag

solve for Lo L1 —

characteristic polynomial

the denominator resembles the original differential equation via the relationship

dJ
dtJ

« 3 gJ

the numerator is determined by the forcing term and the initial conditions

step 3 (partial fractions) requires the linear factors of the characteristic polynomial



polynomials in one variable

degree

. —1
p(s) = aps" + ap—1s"" "+ --- 4+ a1s + ao
coefficients p(S)

a linear factor (.5' — a) of p(s) corresponds to a root (or a zero)
p(a) = 0 if, andonlyif, p(s) = (s —a)q(s)

a polynomial of degree n can have no more than n roots, counted with multiplicity

: 2 .
the polynomial X <+ 1 has no roots which are real numbers but does have
roots which are complex numbers



fundamental theorem of algebra

a polynomial of degree n with complex coefficients
always has n complex roots:

p(s) =an(s—21)(s—22) (s —2p)

where z1.--- zZ, are complex numbers __
1777-1855

this theorem was first properly stated in Gauss's doctoral thesis in 1799: “Demonstratio
nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in
factores reales primi vel secundi gradus resolvi posse”

the complex numbers are “algebraically closed”

if the coefficients of the polynomial are real, then the roots may be complex but
they will occur in conjugate pairs Z; and Z;

z=a-+ b 2=0—1D



solving linear ODEs - partial fractions

express the characteristic polynomial in terms of its roots, collecting together
repeated roots

Z(8) = apls — 21 ) 05— 2p) 2~ (8 —2)'F

factor in characteristic term in partial fraction
polynomial expansion
t A;
root z, appears (S _ zi)
once only 8 — z;
A A A
root z. appears 1.1 17,2 13Ty
3 bP (s —2)'1 + R v
rj times (s —z) (s— :fj) (s —2zj)7
. j U

u=1 (3_~ )U



solving linear ODEs with no forcing

step 3 becomes the following partial fraction expansion

= ‘11,1.5 3 4;“’“’
ﬁ(’l)( )— Z(q_21)u ;(q—zk)u

the solution can then be read off from the TABLE as in step 4

Aj\l 4

> e %

> IL.“' Ezj- t

(s — 2))"

powers of t in the solution arise from repeated roots of the characteristic polynomial



in summary, when there is no forcing,

d"z d"1g dx
an—— + a I ~-—|—r_11¥—|—a020
dt

dtn L dtn—1

has solutions which are linear combinations of terms of the form 1’ Ezft

where Z; is a root of the characteristic polynomial

a"-’l'—qn _l_ a-n—l-—qn_l _I_ U ‘|‘ ails ‘I‘ apg — O

and 7 is less than the number of times z; is repeated as a root

complex conjugate roots conspire to make the overall solution real




solving linear ODEs with forcing

the Laplace transform of the solution is given by

L(f) + c(s)

L(x)(s) = Z(5)

the forcing term E(f) may introduce new roots into the denominator

dx b z(0)
dt Tar="5 (L) s(s + a) T s+a

we will see this again in the next lecture with the Bode plot



stability, or “preventing wide oscillations”

the stability of a linear ODE is determined by how it behaves in the
absence of any forcing

A" dn— 1 7 d.

T + a,,_1 1 + -+ ala + agzr =0

an

when its steady state occurs at x =0

the system is STABLE if it relaxes back to 0 from any initial condition

stable unstable



stability and the roots of Z(s)

the solution with any initial condition is a linear combination of terms

td eZt
Euler's formula -
sine or cosine

Zu — Ay _I_ ?,bu tjez“t — tjea"tt-teibi‘.i-t

real part increasing power of t
(if z, is repeated)

imaginary part
increasing or decaying exponential depending on
whether a  is positive or negative

a decaying exponential of rate a > 0, no matter how small, will always overwhelm
a power of t, no matter how large,

hence, the solution with any initial condition will relax to O if all the roots of the
characteristic equation have negative real parts



stability depends on the real part of the root

e(a—l—ib)t

N

time

g
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+b
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-+
-
+
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b, repeated twice




stability of a linear ODE

It will be seen that the motion of a machine with its governor consists in general
of a uniform motion, combined with a disturbance which may be expressed as the
sum of several component motions. These components may be of four different
kinds :-

(1) The disturbance may continually increase.

(2) It may continually diminish.

(3) It may be an oscillation of continually increasing amplitude.
(4) It may be an oscillation of continually decreasing amplitude.

The first and third cases are evidently inconsistent with the stability of the
motion; and the second and fourth alone are admissible in a good governor. This
condition i1s mathematically equivalent to the condition that all the possible roots,
and all the possible parts of the impossible roots, of a certain equation shall be

negative.

1831-1879

linear ODE, with no forcing term, is stable if the roots of its
characteristic equation all have negative real parts

] C Mawell, “On governors”, Proc Roy Soc, 16:270-83, 1868.




second-order linear ODEs

consider a system which can be normalised as follows

positive coefficient of x is +1

i
( 1 ) d?x (25) dz J

dt? dt =

Lu‘2 W

w > O fundamental frequency (time)™

5 damping ratio dimensionless
with these choices the characteristic polynomial has the following two roots

s =w(—§+16%2—-1)

the system is stable provided that é > 0



P —10 undamped \/ \/ v \/ cos(wt)

O & (S < 1 underdamped \ /\/—\7—‘\__ e—wo‘t COS(w\/E]_ o 52 t)

o=1 critically damped to—wot

K Jpp—
1l <@ overdamped ew(—0+Vié<—-1)t




integral controllers

1\ d?x b\ dz b
“ | 2= w=/k; §=
(ki) 22 T (k?-) 5 =T ""‘ 2VE;

30 30

r=2,b=2,ki=0.4 r=2,b=2,ki=1

2.05 — 20f
l.S/ 1_5//_-
overdamped critically damped

5 =1.58 5 =1
05 05

0 5 10 15 ZI[] Q 1 2 3 4 5
& r=2,b=2k =3 =2, k; = 50
2.0 —— a0k /\\//-\th_..—-._
15} 1.5/
10} underdamped . “ringing” or “hunting”
USE 8 =0.58 E 6 =0.14
Aar [].5_—




proportional integral controllers

1\ d?z b+ kp) dx
ki) dt2 ki ) dt
_-m:- r=2,b=2rki=50'kp=13
' / overdamped
1-”: 6 =1.06

N e o b+ kp
1 2 ;‘ki
3.{1:- r=2'b=2’|<i=5(),kp=10
25f
1.52-
: underdamped
5=0.85
. 2.10
05F i
—[;_'_'_'_'_1'_2.05:-
2.(]:]:
1.35:-
0.0 ETH Ilfl:ul — I1|.5I 21'-'
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