
README for the R code to the paper ”The

dynamic linear epigenome”

Tobias Ahsendorf1,2

1DKFZ, D-69120 Heidelberg, Germany
2Department of Systems Biology, Harvard Medical School, Boston,

MA, USA

August 26, 2016

We assume to have input files in a bedgraph format style, i.e., like chromo-
some, start position, end position (and value), so it might look like (the data
are assumed to be tab-separated)

chr1 1 1000 4

chr1 500 2000 13

...

or like

chr1 1 200

chr1 50 250

...,

where in the latter case we assume the value to be 1 (might make sense for
aligned reads, when each line represents a read). In case we start with BAM
files (or similar), conversion tools like bamtobed from bedtools might be used
in first place. When we want to assign enrichment values to each bin on a
genome-wide scale (or a subset of chromosomes) one has to call the R script
Enrichments_per_bin_processing.R, for instance, via

Rscript Enrichments_per_bin_processing.R /home/input

.bg /home/output.RData BSgenome.Hsapiens.UCSC.

hg19 4 1000 chr1 chr2 chr3

which outputs an RData file at the desired position, see the R script file for
further information. Though the content of that R script could be formulated
as an R function, we decided not to do so as according to our own experience it
is most useful when calling that R script file on a cluster by submitting several
jobs each dealing with one or a few files at a time.
After that has been done for each mark at each time point, we have to combine
all processed data for each mark. For that purpose we use a function from the
collection functions.R.

1

http://bedtools.readthedocs.org/en/latest/


#load all functions from functions.R

source(’/home/functions.R’)

#paths to the individual RData files for the epigenetic marks

#at a particular time point (the output of

#Enrichments_per_bin_processing.R), e.g.,

paths = c("/home/test.RData","/home/test2.RData")

#marks at the respective positions of paths, e.g.,

marks = c("H3K4me3","H3K27me3")

#to obtain the pasted data frame at that time point we call

X = paste_processed_data(paths,marks)

#or with a different quantile cutoff

X = paste_processed_data(paths,marks,quantile_cutoff=0.05)

Now assume we have a data frame to two different time points, respectively,
where the rows correspond to the same bins. Here we can use the example data
which correspond to 10000 randomly selected loci of Koike et al. data at 1000
bp resolution at time point 0 hours and time point 4 hours. These can be loaded
with something like

load("/home/Koike_0hours_sample.RData")

start_data = dataset

load("/home/Koike_4hours_sample.RData")

target_data=dataset

If we want to predict the changes at each bin for all possible marks from
start data to target data by using 10-fold CV and a homogeneous system of
linear ODEs of first order, we call

X = CV_ODE_prediction_change(start_data,target_data)

For further information regarding that function, particularly what parameters
we can modify (e.g., k-fold CV, not necessarily homogeneous system of linear
ODEs of first order), we refer to functions.R. In particular, since for large
datasets it might be challenging to calculate everything for all marks at once,
we can select individual marks by

#select one or a few marks

marks_sel = c("H3K4me3","H3K9ac")

X = CV_ODE_prediction_change(start_data,target_data,marks=marks_sel)

In addition, when assuming a system of linear ODEs of first order with constant
coefficients, d

dtx = A · x(+b), we might want to get out A (and b).
So if we start with the transition from start data to target data, at time points
t1 and t2, respectively, where t1 < t2, then we first calculate the rows of the
matrix B = exp(A · (t2 − t1)) in the homogeneous case. In the general case

we want to get out the rows B = exp

([
A b
0 0

]
· (t2 − t1)

)
, from which can

reconstruct A and b. For the former we first we call

r = ode_exponential_matrix_rows(start_data,target_data)

2



and for the ladder we call

r = ode_exponential_matrix_rows(start_data,target_data,ODE_mode = "with intercept")

and get out a list of the rows of B and the names of that list correspond to the
marks that are present in both start data and target data (and the constant
value in the not necessarily homogeneous case). Just as above, the computation
for large datasets might be challenging for all marks at once, here we can select
individual marks by

r = ode_exponential_matrix_rows(start_data,target_data,marks=marks_sel)

in the homogeneous case and with the obvious variation in the general case and
get out a list of rows of B, but just for those marks that have been called. In
the latter option, it is necessary to paste together the output of all individual
calculations into a list, such that we do have a list covering all marks that are
present in both start data and target data (and the constant value in the not
necessarily homogeneous case). Now, since in the matrix logarithm complex
values might arise and all matrix logarithm functions in R (at least those we are
aware of) run into trouble then, we call Matlab using the function system().
We suggest to test that first, for instance, by entering the toy code

system(’matlab -nodisplay -r "a=1; display(a); exit"’)

into the R console.
If that does work, we can call

#to ensure that we have the rows for all marks

#in the variable r we call again

r = ode_exponential_matrix_rows(start_data,target_data)

#set time points (in minutes)

t_1 = 0

t_2 = 240

#path for a short term intermediate csv file storage

#directory has to be existent

temporal_path = "/home/intermediate.csv"

output = ode_logarithm_matrix(r,t_1,t_2,temporal_path)

and get out a list with the matrix A (and the vector b).

3


